These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1245 related articles for article (PubMed ID: 29150499)
21. Combination of a Push-Pull-Block Strategy with a Heterologous Xylose Assimilation Pathway toward Lipid Overproduction from Lignocellulose in Sun T; Yu Y; Wang L; Qi Y; Xu T; Wang Z; Lin L; Ledesma-Amaro R; Ji XJ ACS Synth Biol; 2023 Mar; 12(3):761-767. PubMed ID: 36789673 [TBL] [Abstract][Full Text] [Related]
22. Lipid production from lignocellulosic biomass using an engineered Yarrowia lipolytica strain. Drzymała-Kapinos K; Mirończuk AM; Dobrowolski A Microb Cell Fact; 2022 Oct; 21(1):226. PubMed ID: 36307797 [TBL] [Abstract][Full Text] [Related]
23. Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars. Dhar KS; Wendisch VF; Nampoothiri KM J Biotechnol; 2016 Jul; 230():63-71. PubMed ID: 27184428 [TBL] [Abstract][Full Text] [Related]
24. Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway. Wagner M; Shen L; Albersmeier A; van der Kolk N; Kim S; Cha J; Bräsen C; Kalinowski J; Siebers B; Albers SV Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150511 [No Abstract] [Full Text] [Related]
25. Engineering of Pentose Transport in Nijland JG; Driessen AJM Front Bioeng Biotechnol; 2019; 7():464. PubMed ID: 32064252 [TBL] [Abstract][Full Text] [Related]
26. Bioproduction of succinic acid from xylose by engineered Prabhu AA; Ledesma-Amaro R; Lin CSK; Coulon F; Thakur VK; Kumar V Biotechnol Biofuels; 2020; 13():113. PubMed ID: 32607128 [TBL] [Abstract][Full Text] [Related]
27. Bypassing the Pentose Phosphate Pathway: Towards Modular Utilization of Xylose. Chomvong K; Bauer S; Benjamin DI; Li X; Nomura DK; Cate JH PLoS One; 2016; 11(6):e0158111. PubMed ID: 27336308 [TBL] [Abstract][Full Text] [Related]
28. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Kwak S; Jin YS Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761 [TBL] [Abstract][Full Text] [Related]
29. Sustainable production of FAEE biodiesel using the oleaginous yeast Yarrowia lipolytica. Yu A; Zhao Y; Li J; Li S; Pang Y; Zhao Y; Zhang C; Xiao D Microbiologyopen; 2020 Jul; 9(7):e1051. PubMed ID: 32342649 [TBL] [Abstract][Full Text] [Related]
30. Transforming sugars into fat - lipid biosynthesis using different sugars in Yarrowia lipolytica. Hapeta P; Rakicka M; Dulermo R; Gamboa-Meléndez H; Cruz-Le Coq AM; Nicaud JM; Lazar Z Yeast; 2017 Jul; 34(7):293-304. PubMed ID: 28303649 [TBL] [Abstract][Full Text] [Related]
31. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains. Bettiga M; Hahn-Hägerdal B; Gorwa-Grauslund MF Biotechnol Biofuels; 2008 Oct; 1(1):16. PubMed ID: 18947407 [TBL] [Abstract][Full Text] [Related]
32. The production of ethanol from lignocellulosic biomass by Kluyveromyces marxianus CICC 1727-5 and Spathaspora passalidarum ATCC MYA-4345. Du C; Li Y; Zhao X; Pei X; Yuan W; Bai F; Jiang Y Appl Microbiol Biotechnol; 2019 Mar; 103(6):2845-2855. PubMed ID: 30706114 [TBL] [Abstract][Full Text] [Related]
33. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose. Lawford HG; Rousseau JD Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270 [TBL] [Abstract][Full Text] [Related]
34. Overproduction of Fatty Acid Ethyl Esters by the Oleaginous Yeast Yarrowia lipolytica through Metabolic Engineering and Process Optimization. Gao Q; Cao X; Huang YY; Yang JL; Chen J; Wei LJ; Hua Q ACS Synth Biol; 2018 May; 7(5):1371-1380. PubMed ID: 29694786 [TBL] [Abstract][Full Text] [Related]
35. Identification of novel pentose transporters in Kluyveromyces marxianus using a new screening platform. Donzella L; Varela JA; Sousa MJ; Morrissey JP FEMS Yeast Res; 2021 May; 21(4):. PubMed ID: 33890624 [TBL] [Abstract][Full Text] [Related]
36. Enhancing ethanol yields through d-xylose and l-arabinose co-fermentation after construction of a novel high efficient l-arabinose-fermenting Saccharomyces cerevisiae strain. Caballero A; Ramos JL Microbiology (Reading); 2017 Apr; 163(4):442-452. PubMed ID: 28443812 [TBL] [Abstract][Full Text] [Related]
37. Coutilization of D-Glucose, D-Xylose, and L-Arabinose in Wang C; Zhao J; Qiu C; Wang S; Shen Y; Du B; Ding Y; Bao X Biomed Res Int; 2017; 2017():5318232. PubMed ID: 28459063 [TBL] [Abstract][Full Text] [Related]
38. Engineering xylose utilization in Yarrowia lipolytica by understanding its cryptic xylose pathway. Rodriguez GM; Hussain MS; Gambill L; Gao D; Yaguchi A; Blenner M Biotechnol Biofuels; 2016; 9():149. PubMed ID: 27446238 [TBL] [Abstract][Full Text] [Related]
39. Efficient Production of Triacetic Acid Lactone from Lignocellulose Hydrolysate by Metabolically Engineered Liu H; Huang X; Liu Y; Jing X; Ning Y; Xu P; Deng L; Wang F J Agric Food Chem; 2023 Dec; 71(48):18909-18918. PubMed ID: 37999448 [TBL] [Abstract][Full Text] [Related]
40. Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Karhumaa K; Wiedemann B; Hahn-Hägerdal B; Boles E; Gorwa-Grauslund MF Microb Cell Fact; 2006 Apr; 5():18. PubMed ID: 16606456 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]