These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1087 related articles for article (PubMed ID: 29150505)
1. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests. Liu Y; Wang Y; Shu C; Lin K; Song F; Bravo A; Soberón M; Zhang J Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150505 [TBL] [Abstract][Full Text] [Related]
2. Cry78Aa, a novel Bacillus thuringiensis insecticidal protein with activity against Laodelphax striatellus and Nilaparvata lugens. Wang Y; Liu Y; Zhang J; Crickmore N; Song F; Gao J; Shu C J Invertebr Pathol; 2018 Oct; 158():1-5. PubMed ID: 30017953 [TBL] [Abstract][Full Text] [Related]
3. Cry78Ba1, One Novel Crystal Protein from Cao B; Shu C; Geng L; Song F; Zhang J J Agric Food Chem; 2020 Feb; 68(8):2539-2546. PubMed ID: 32023056 [TBL] [Abstract][Full Text] [Related]
4. Single and fused transgenic Bacillus thuringiensis rice alter the species-specific responses of non-target planthoppers to elevated carbon dioxide and temperature. Wan G; Dang Z; Wu G; Parajulee MN; Ge F; Chen F Pest Manag Sci; 2014 May; 70(5):734-42. PubMed ID: 24136625 [TBL] [Abstract][Full Text] [Related]
5. Retargeting of the Bacillus thuringiensis toxin Cyt2Aa against hemipteran insect pests. Chougule NP; Li H; Liu S; Linz LB; Narva KE; Meade T; Bonning BC Proc Natl Acad Sci U S A; 2013 May; 110(21):8465-70. PubMed ID: 23650347 [TBL] [Abstract][Full Text] [Related]
6. Isolation and molecular characterization of Bacillus thuringiensis subsp. kurstaki toxic to lepidopteran pests Spodoptera spp. and Plutella xylostella. Park MG; Choi JY; Kim JH; Park DH; Wang M; Kim HJ; Kim SH; Lee HY; Je YH Pest Manag Sci; 2022 Jul; 78(7):2976-2984. PubMed ID: 35419912 [TBL] [Abstract][Full Text] [Related]
7. Loop replacements with gut-binding peptides in Cry1Ab domain II enhanced toxicity against the brown planthopper, Nilaparvata lugens (Stål). Shao E; Lin L; Chen C; Chen H; Zhuang H; Wu S; Sha L; Guan X; Huang Z Sci Rep; 2016 Feb; 6():20106. PubMed ID: 26830331 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a Novel Insecticidal Protein Cry9Cb1 from Bacillus thuringiensis. Shan Y; Shu C; He K; Cheng X; Geng L; Xiang W; Zhang J J Agric Food Chem; 2019 Apr; 67(13):3781-3788. PubMed ID: 30865469 [TBL] [Abstract][Full Text] [Related]
9. Characterization of Two Novel Shu C; Yan G; Huang S; Geng Y; Soberón M; Bravo A; Geng L; Zhang J Toxins (Basel); 2020 Oct; 12(10):. PubMed ID: 33027918 [TBL] [Abstract][Full Text] [Related]
10. Bacillus thuringiensis toxins: an overview of their biocidal activity. Palma L; Muñoz D; Berry C; Murillo J; Caballero P Toxins (Basel); 2014 Dec; 6(12):3296-325. PubMed ID: 25514092 [TBL] [Abstract][Full Text] [Related]
11. Insecticidal Activity of Domínguez-Arrizabalaga M; Villanueva M; Escriche B; Ancín-Azpilicueta C; Caballero P Toxins (Basel); 2020 Jun; 12(7):. PubMed ID: 32610662 [No Abstract] [Full Text] [Related]
12. Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens. Bel Y; Sheets JJ; Tan SY; Narva KE; Escriche B Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363958 [No Abstract] [Full Text] [Related]
13. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. Roh JY; Choi JY; Li MS; Jin BR; Je YH J Microbiol Biotechnol; 2007 Apr; 17(4):547-59. PubMed ID: 18051264 [TBL] [Abstract][Full Text] [Related]
15. The correlation of the presence and expression levels of cry genes with the insecticidal activities against Plutella xylostella for Bacillus thuringiensis strains. Chen ML; Chen PH; Pang JC; Lin CW; Hwang CF; Tsen HY Toxins (Basel); 2014 Aug; 6(8):2453-70. PubMed ID: 25153253 [TBL] [Abstract][Full Text] [Related]
16. Tobacco plants expressing the Cry1AbMod toxin suppress tolerance to Cry1Ab toxin of Manduca sexta cadherin-silenced larvae. Porta H; Jiménez G; Cordoba E; León P; Soberón M; Bravo A Insect Biochem Mol Biol; 2011 Jul; 41(7):513-9. PubMed ID: 21621616 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of Bacillus thuringiensis Cry1Ab and Cry1Fa Toxicity to Spodoptera frugiperda by Domain III Mutations Indicates There Are Two Limiting Steps in Toxicity as Defined by Receptor Binding and Protein Stability. Gómez I; Ocelotl J; Sánchez J; Lima C; Martins E; Rosales-Juárez A; Aguilar-Medel S; Abad A; Dong H; Monnerat R; Peña G; Zhang J; Nelson M; Wu G; Bravo A; Soberón M Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097439 [No Abstract] [Full Text] [Related]
18. CRISPR/Cas9-mediated knockout of both the PxABCC2 and PxABCC3 genes confers high-level resistance to Bacillus thuringiensis Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.). Guo Z; Sun D; Kang S; Zhou J; Gong L; Qin J; Guo L; Zhu L; Bai Y; Luo L; Zhang Y Insect Biochem Mol Biol; 2019 Apr; 107():31-38. PubMed ID: 30710623 [TBL] [Abstract][Full Text] [Related]
19. Insecticidal activity of Bacillus thuringiensis Cry1Bh1 against Ostrinia nubilalis (Hubner) (Lepidoptera: Crambidae) and other lepidopteran pests. Lira J; Beringer J; Burton S; Griffin S; Sheets J; Tan SY; Woosley A; Worden S; Narva KE Appl Environ Microbiol; 2013 Dec; 79(24):7590-7. PubMed ID: 24077715 [TBL] [Abstract][Full Text] [Related]
20. Downregulation of Chilo suppressalis alkaline phosphatase genes associated with resistance to three transgenic Bacillus thuringiensis rice lines. Qiu L; Wang P; Wu T; Li B; Wang X; Lei C; Lin Y; Zhao J; Ma W Insect Mol Biol; 2018 Feb; 27(1):83-89. PubMed ID: 28940938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]