BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

588 related articles for article (PubMed ID: 29150509)

  • 21. Investigation of the protective effect of whey proteins on lactococcal phages during heat treatment at various pH.
    Geagea H; Gomaa AI; Remondetto G; Moineau S; Subirade M
    Int J Food Microbiol; 2015 Oct; 210():33-41. PubMed ID: 26093988
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of airborne lactococcal bacteriophages in cheese manufacturing plants.
    Verreault D; Gendron L; Rousseau GM; Veillette M; Massé D; Lindsley WG; Moineau S; Duchaine C
    Appl Environ Microbiol; 2011 Jan; 77(2):491-7. PubMed ID: 21115712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of the receptor-binding protein in 936-species lactococcal bacteriophages.
    Dupont K; Vogensen FK; Neve H; Bresciani J; Josephsen J
    Appl Environ Microbiol; 2004 Oct; 70(10):5818-24. PubMed ID: 15466519
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome organization and characterization of the virulent lactococcal phage 1358 and its similarities to Listeria phages.
    Dupuis ME; Moineau S
    Appl Environ Microbiol; 2010 Mar; 76(5):1623-32. PubMed ID: 20061452
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative genomics of lactococcal phages: insight from the complete genome sequence of Lactococcus lactis phage BK5-T.
    Desiere F; Mahanivong C; Hillier AJ; Chandry PS; Davidson BE; Brüssow H
    Virology; 2001 May; 283(2):240-52. PubMed ID: 11336549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stability of active prophages in industrial Lactococcus lactis strains in the presence of heat, acid, osmotic, oxidative and antibiotic stressors.
    Ho CH; Stanton-Cook M; Beatson SA; Bansal N; Turner MS
    Int J Food Microbiol; 2016 Mar; 220():26-32. PubMed ID: 26773254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lactococcus lactis lytic bacteriophages of the P335 group are inhibited by overexpression of a truncated CI repressor.
    Durmaz E; Madsen SM; Israelsen H; Klaenhammer TR
    J Bacteriol; 2002 Dec; 184(23):6532-44. PubMed ID: 12426341
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodiversity of Lactococcus lactis bacteriophages in Polish dairy environment.
    Szczepańska AK; Hejnowicz MS; Kołakowski P; Bardowski J
    Acta Biochim Pol; 2007; 54(1):151-8. PubMed ID: 17311108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics of the thermal inactivation of the Lactococcus lactis bacteriophage P008.
    Müller-Merbach M; Neve H; Hinrichs J
    J Dairy Res; 2005 Aug; 72(3):281-6. PubMed ID: 16174358
    [TBL] [Abstract][Full Text] [Related]  

  • 30.
    Chmielewska-Jeznach M; Bardowski JK; Szczepankowska AK
    Viruses; 2020 Mar; 12(3):. PubMed ID: 32138347
    [No Abstract]   [Full Text] [Related]  

  • 31. Phage-Host Interactions of Cheese-Making Lactic Acid Bacteria.
    Mahony J; McDonnell B; Casey E; van Sinderen D
    Annu Rev Food Sci Technol; 2016; 7():267-85. PubMed ID: 26735798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phages of dairy bacteria.
    Brussow H
    Annu Rev Microbiol; 2001; 55():283-303. PubMed ID: 11544357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome analysis of the obligately lytic bacteriophage 4268 of Lactococcus lactis provides insight into its adaptable nature.
    Trotter M; McAuliffe O; Callanan M; Edwards R; Fitzgerald GF; Coffey A; Ross RP
    Gene; 2006 Jan; 366(1):189-99. PubMed ID: 16325353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The DNA binding mechanism of a SSB protein from Lactococcus lactis siphophage p2.
    Scaltriti E; Polverini E; Grolli S; Eufemi E; Moineau S; Cambillau C; Ramoni R
    Biochim Biophys Acta; 2013 Jun; 1834(6):1070-6. PubMed ID: 23429182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. P087, a lactococcal phage with a morphogenesis module similar to an Enterococcus faecalis prophage.
    Villion M; Chopin MC; Deveau H; Ehrlich SD; Moineau S; Chopin A
    Virology; 2009 May; 388(1):49-56. PubMed ID: 19349056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A high-throughput qPCR system for simultaneous quantitative detection of dairy Lactococcus lactis and Leuconostoc bacteriophages.
    Muhammed MK; Krych L; Nielsen DS; Vogensen FK
    PLoS One; 2017; 12(3):e0174223. PubMed ID: 28339484
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Whole genome analysis, thermal and UV-tolerance of Lactococcus phage BIM BV-114 isolated from cheese brine.
    Herasimovich A; Akhremchuk A; Valentovich L; Sidarenka A
    Res Microbiol; 2024 Apr; ():104203. PubMed ID: 38685370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome sequence and global gene expression of Q54, a new phage species linking the 936 and c2 phage species of Lactococcus lactis.
    Fortier LC; Bransi A; Moineau S
    J Bacteriol; 2006 Sep; 188(17):6101-14. PubMed ID: 16923877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of adsorption inhibition, restriction/modification and abortive infection type phage resistance systems in Lactococcus lactis strains.
    Tükel C; Sanlibaba P; Ozden B; Akçelik M
    Acta Biol Hung; 2006 Sep; 57(3):377-85. PubMed ID: 17048701
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strain diversity and phage resistance in complex dairy starter cultures.
    Spus M; Li M; Alexeeva S; Wolkers-Rooijackers JC; Zwietering MH; Abee T; Smid EJ
    J Dairy Sci; 2015 Aug; 98(8):5173-82. PubMed ID: 26026763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.