These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 29151135)

  • 1. Classification of G-protein coupled receptors based on a rich generation of convolutional neural network, N-gram transformation and multiple sequence alignments.
    Li M; Ling C; Xu Q; Gao J
    Amino Acids; 2018 Feb; 50(2):255-266. PubMed ID: 29151135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of multiple machine learning algorithms for the classification of G-protein-coupled receptors using molecular evolution model-based feature extraction strategy.
    Ling C; Wei X; Shen Y; Zhang H
    Amino Acids; 2021 Nov; 53(11):1705-1714. PubMed ID: 34562175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GPCR-MPredictor: multi-level prediction of G protein-coupled receptors using genetic ensemble.
    Naveed M; Khan A
    Amino Acids; 2012 May; 42(5):1809-23. PubMed ID: 21505826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel and efficient technique for identification and classification of GPCRs.
    Gupta R; Mittal A; Singh K
    IEEE Trans Inf Technol Biomed; 2008 Jul; 12(4):541-8. PubMed ID: 18632334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representation Learning for Class C G Protein-Coupled Receptors Classification.
    Cruz-Barbosa R; Ramos-PĂ©rez EG; Giraldo J
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29562690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of interresidue contacts with DeepMetaPSICOV in CASP13.
    Kandathil SM; Greener JG; Jones DT
    Proteins; 2019 Dec; 87(12):1092-1099. PubMed ID: 31298436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying GPCR-drug interaction based on wordbook learning from sequences.
    Wang P; Huang X; Qiu W; Xiao X
    BMC Bioinformatics; 2020 Apr; 21(1):150. PubMed ID: 32312232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting G-protein-coupled receptors families using different physiochemical properties and pseudo amino acid composition.
    Rehman ZU; Mirza MT; Khan A; Xhaard H
    Methods Enzymol; 2013; 522():61-79. PubMed ID: 23374180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. deepNEC: a novel alignment-free tool for the identification and classification of nitrogen biochemical network-related enzymes using deep learning.
    Duhan N; Norton JM; Kaundal R
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced alphabet motif methodology for GPCR annotation.
    Gangal R; Kumar KK
    J Biomol Struct Dyn; 2007 Dec; 25(3):299-310. PubMed ID: 17937491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. tRNA-DL: A Deep Learning Approach to Improve tRNAscan-SE Prediction Results.
    Gao X; Wei Z; Hakonarson H
    Hum Hered; 2018; 83(3):163-172. PubMed ID: 30685762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classifying G-protein-coupled receptors to the finest subtype level.
    Gao QB; Ye XF; He J
    Biochem Biophys Res Commun; 2013 Sep; 439(2):303-8. PubMed ID: 23973783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical learning architecture with automatic feature selection for multiclass protein fold classification.
    Huang CD; Lin CT; Pal NR
    IEEE Trans Nanobioscience; 2003 Dec; 2(4):221-32. PubMed ID: 15376912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel fractal approach for predicting G-protein-coupled receptors and their subfamilies with support vector machines.
    Nie G; Li Y; Wang F; Wang S; Hu X
    Biomed Mater Eng; 2015; 26 Suppl 1():S1829-36. PubMed ID: 26405954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualizing the GPCR Network: Classification and Evolution.
    Hu GM; Mai TL; Chen CM
    Sci Rep; 2017 Nov; 7(1):15495. PubMed ID: 29138525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein classification based on text document classification techniques.
    Cheng BY; Carbonell JG; Klein-Seetharaman J
    Proteins; 2005 Mar; 58(4):955-70. PubMed ID: 15645499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast fourier transform-based support vector machine for prediction of G-protein coupled receptor subfamilies.
    Guo YZ; Li ML; Wang KL; Wen ZN; Lu MC; Liu LX; Jiang L
    Acta Biochim Biophys Sin (Shanghai); 2005 Nov; 37(11):759-66. PubMed ID: 16270155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Present perspectives on the automated classification of the G-protein coupled receptors (GPCRs) at the protein sequence level.
    Davies MN; Gloriam DE; Secker A; Freitas AA; Timmis J; Flower DR
    Curr Top Med Chem; 2011; 11(15):1994-2009. PubMed ID: 21470173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.