BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29151219)

  • 1. Implementation of the NMR CHEmical Shift Covariance Analysis (CHESCA): A Chemical Biologist's Approach to Allostery.
    Boulton S; Selvaratnam R; Ahmed R; Melacini G
    Methods Mol Biol; 2018; 1688():391-405. PubMed ID: 29151219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping allostery through the covariance analysis of NMR chemical shifts.
    Selvaratnam R; Chowdhury S; VanSchouwen B; Melacini G
    Proc Natl Acad Sci U S A; 2011 Apr; 108(15):6133-8. PubMed ID: 21444788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tool set to map allosteric networks through the NMR chemical shift covariance analysis.
    Boulton S; Akimoto M; Selvaratnam R; Bashiri A; Melacini G
    Sci Rep; 2014 Dec; 4():7306. PubMed ID: 25482377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of core allosteric sites through temperature- and nucleus-invariant chemical shift covariance.
    Mohamed H; Baryar U; Bashiri A; Selvaratnam R; VanSchouwen B; Melacini G
    Biophys J; 2022 Jun; 121(11):2035-2045. PubMed ID: 35538664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auto-FACE: an NMR based binding site mapping program for fast chemical exchange protein-ligand systems.
    Krishnamoorthy J; Yu VC; Mok YK
    PLoS One; 2010 Feb; 5(2):e8943. PubMed ID: 20174626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of coordinated NMR chemical shifts to map allosteric regulatory networks in proteins.
    Skeens E; Lisi GP
    Methods; 2023 Jan; 209():40-47. PubMed ID: 36535575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CHESPA/CHESCA-SPARKY: automated NMR data analysis plugins for SPARKY to map protein allostery.
    Shao H; Boulton S; Olivieri C; Mohamed H; Akimoto M; Subrahmanian MV; Veglia G; Markley JL; Melacini G; Lee W
    Bioinformatics; 2021 May; 37(8):1176-1177. PubMed ID: 32926121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying coupled clusters of allostery participants through chemical shift perturbations.
    Xu Y; Zhang D; Rogawski R; Nimigean CM; McDermott AE
    Proc Natl Acad Sci U S A; 2019 Feb; 116(6):2078-2085. PubMed ID: 30679272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in NMR Methods To Map Allosteric Sites: From Models to Translation.
    Boulton S; Melacini G
    Chem Rev; 2016 Jun; 116(11):6267-304. PubMed ID: 27111288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leveraging Reciprocity to Identify and Characterize Unknown Allosteric Sites in Protein Tyrosine Phosphatases.
    Cui DS; Beaumont V; Ginther PS; Lipchock JM; Loria JP
    J Mol Biol; 2017 Jul; 429(15):2360-2372. PubMed ID: 28625849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR methods to dissect the molecular mechanisms of disease-related mutations (DRMs): Understanding how DRMs remodel functional free energy landscapes.
    Byun JA; Melacini G
    Methods; 2018 Sep; 148():19-27. PubMed ID: 29857190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding cAMP-dependent allostery by NMR spectroscopy: comparative analysis of the EPAC1 cAMP-binding domain in its apo and cAMP-bound states.
    Mazhab-Jafari MT; Das R; Fotheringham SA; SilDas S; Chowdhury S; Melacini G
    J Am Chem Soc; 2007 Nov; 129(46):14482-92. PubMed ID: 17973384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.
    Kalescky R; Zhou H; Liu J; Tao P
    PLoS Comput Biol; 2016 Apr; 12(4):e1004893. PubMed ID: 27115535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using NMR to Develop New Allosteric and Allo-Network Drugs.
    Smith RE; Tran K; Richards KM; Luo R
    Curr Drug Discov Technol; 2015; 12(4):193-204. PubMed ID: 26577663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR Methods to Study Dynamic Allostery.
    Grutsch S; Brüschweiler S; Tollinger M
    PLoS Comput Biol; 2016 Mar; 12(3):e1004620. PubMed ID: 26964042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in NMR Methods to Identify Allosteric Sites and Allosteric Ligands.
    Abdelkarim H; Hitchinson B; Banerjee A; Gaponenko V
    Adv Exp Med Biol; 2019; 1163():171-186. PubMed ID: 31707704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic analysis of allosteric and non-allosteric effects arising from nanobody binding to two epitopes of the dihydrofolate reductase of Escherichia coli.
    Oyen D; Wechselberger R; Srinivasan V; Steyaert J; Barlow JN
    Biochim Biophys Acta; 2013 Oct; 1834(10):2147-57. PubMed ID: 23911607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping allostery through equilibrium perturbation NMR spectroscopy.
    Das R; Abu-Abed M; Melacini G
    J Am Chem Soc; 2006 Jul; 128(26):8406-7. PubMed ID: 16802799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cAMP-dependent allostery and dynamics in Epac: an NMR view.
    Selvaratnam R; Akimoto M; VanSchouwen B; Melacini G
    Biochem Soc Trans; 2012 Feb; 40(1):219-23. PubMed ID: 22260694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR tools to detect protein allostery.
    Gampp O; Kadavath H; Riek R
    Curr Opin Struct Biol; 2024 Jun; 86():102792. PubMed ID: 38428364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.