BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29151343)

  • 1. Deuterium-Labeling Studies Reveal the Mechanism of Cytochrome P450-Catalyzed Formation of 2-Aminoacetophenone from 3-Methylindole (Skatole) in Porcine Liver Microsomes.
    Gerlach C; Wüst M
    J Agric Food Chem; 2017 Dec; 65(49):10775-10780. PubMed ID: 29151343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2-Aminoacetophenone Is the Main Volatile Phase I Skatole Metabolite in Pietrain × Baden-Württemberg Hybrid Type Boars.
    Gerlach C; Elsinghorst PW; Schmarr HG; Wüst M
    J Agric Food Chem; 2016 Feb; 64(5):1158-63. PubMed ID: 26804051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2-Oxidation, 3-methyl hydroxylation, and 6-hydroxylation of skatole, a contributor to the odour of boar-tainted pork meat, mediated by porcine liver microsomal cytochromes P450 1A2, 2A19, 2E1, and 3A22.
    Uno Y; Morikuni S; Murayama N; Yamazaki H
    Xenobiotica; 2023 Jan; 53(1):60-65. PubMed ID: 36976910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gender-related differences in the formation of skatole metabolites by specific CYP450 in porcine hepatic S9 fractions.
    Borrisser-Pairó F; Rasmussen MK; Ekstrand B; Zamaratskaia G
    Animal; 2015 Apr; 9(4):635-42. PubMed ID: 25465797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The roles of different porcine cytochrome P450 enzymes and cytochrome b5A in skatole metabolism.
    Wiercinska P; Lou Y; Squires EJ
    Animal; 2012 May; 6(5):834-45. PubMed ID: 22558931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence supporting the formation of 2,3-epoxy-3-methylindoline: a reactive intermediate of the pneumotoxin 3-methylindole.
    Skordos KW; Skiles GL; Laycock JD; Lanza DL; Yost GS
    Chem Res Toxicol; 1998 Jul; 11(7):741-9. PubMed ID: 9671536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skatole metabolites in urine as a biological marker of pigs with enhanced hepatic metabolism.
    Brunius C; Vidanarachchi JK; Tomankova J; Lundström K; Andersson K; Zamaratskaia G
    Animal; 2016 Oct; 10(10):1734-40. PubMed ID: 27080076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. End-product inhibition of skatole-metabolising enzymes CYP1A, CYP2A19 and CYP2E1 in porcine and piscine hepatic microsomes.
    Burkina V; Zlabek V; Rasmussen MK; Zamaratskaia G
    Toxicol Lett; 2019 Mar; 303():67-71. PubMed ID: 30599194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism and bioactivation of 3-methylindole by human liver microsomes.
    Yan Z; Easterwood LM; Maher N; Torres R; Huebert N; Yost GS
    Chem Res Toxicol; 2007 Jan; 20(1):140-8. PubMed ID: 17226936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of phase I metabolites of 3-methylindole produced by pig liver microsomes.
    Diaz GJ; Skordos KW; Yost GS; Squires EJ
    Drug Metab Dispos; 1999 Oct; 27(10):1150-6. PubMed ID: 10497141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase II in vitro metabolism of 3-methylindole metabolites in porcine liver.
    Diaz GJ; Squires EJ
    Xenobiotica; 2003 May; 33(5):485-98. PubMed ID: 12746105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of nuclear receptor transactivation on boar taint metabolism and gene expression in porcine hepatocytes.
    Gray MA; Squires EJ
    J Steroid Biochem Mol Biol; 2013 Jan; 133():110-9. PubMed ID: 23032374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase I metabolism of 3-methylindole, an environmental pollutant, by hepatic microsomes from carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss).
    Zlabek V; Burkina V; Borrisser-Pairó F; Sakalli S; Zamaratskaia G
    Chemosphere; 2016 May; 150():304-310. PubMed ID: 26915592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of 3-methylindole by porcine liver microsomes: responsible cytochrome P450 enzymes.
    Diaz GJ; Squires EJ
    Toxicol Sci; 2000 Jun; 55(2):284-92. PubMed ID: 10828259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic studies on the cytochrome P450-catalyzed dehydrogenation of 3-methylindole.
    Skiles GL; Yost GS
    Chem Res Toxicol; 1996; 9(1):291-7. PubMed ID: 8924606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of CYP2A and CYP2E1 in the metabolism of 3-methylindole in primary cultured porcine hepatocytes.
    Terner MA; Gilmore WJ; Lou Y; Squires EJ
    Drug Metab Dispos; 2006 May; 34(5):848-54. PubMed ID: 16501006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatic metabolism of skatole in pigs by cytochrome P4502E1.
    Babol J; Squires EJ; Lundström K
    J Anim Sci; 1998 Mar; 76(3):822-8. PubMed ID: 9535343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porcine CYP2A19, CYP2E1 and CYP1A2 forms are responsible for skatole biotransformation in the reconstituted system.
    Matal J; Matuskova Z; Tunkova A; Anzenbacherova E; Anzenbacher P
    Neuro Endocrinol Lett; 2009; 30 Suppl 1():36-40. PubMed ID: 20027142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a candidate reference method for the simultaneous quantitation of the boar taint compounds androstenone, 3α-androstenol, 3β-androstenol, skatole, and indole in pig fat by means of stable isotope dilution analysis-headspace solid-phase microextraction-gas chromatography/mass spectrometry.
    Fischer J; Elsinghorst PW; Bücking M; Tholen E; Petersen B; Wüst M
    Anal Chem; 2011 Sep; 83(17):6785-91. PubMed ID: 21800819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective dehydrogenation/oxygenation of 3-methylindole by cytochrome p450 enzymes.
    Lanza DL; Yost GS
    Drug Metab Dispos; 2001 Jul; 29(7):950-3. PubMed ID: 11408359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.