These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 2915155)
1. Adult Ixodes dammini on rabbits: development of acute inflammation in the skin and immune responses to salivary gland, midgut, and spirochetal components. Wheeler CM; Coleman JL; Habicht GS; Benach JL J Infect Dis; 1989 Feb; 159(2):265-73. PubMed ID: 2915155 [TBL] [Abstract][Full Text] [Related]
2. Adult Ixodes dammini on rabbits: a hypothesis for the development and transmission of Borrelia burgdorferi. Benach JL; Coleman JL; Skinner RA; Bosler EM J Infect Dis; 1987 Jun; 155(6):1300-6. PubMed ID: 3572040 [TBL] [Abstract][Full Text] [Related]
3. OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. Pal U; Yang X; Chen M; Bockenstedt LK; Anderson JF; Flavell RA; Norgard MV; Fikrig E J Clin Invest; 2004 Jan; 113(2):220-30. PubMed ID: 14722614 [TBL] [Abstract][Full Text] [Related]
4. Amblyomma americanum: identification of tick salivary gland antigens from unfed and early feeding females with comparisons to Ixodes dammini and Dermacentor variabilis. Jaworski DC; Muller MT; Simmen FA; Needham GR Exp Parasitol; 1990 Feb; 70(2):217-26. PubMed ID: 2298277 [TBL] [Abstract][Full Text] [Related]
5. Natural antibody affects survival of the spirochete Borrelia burgdorferi within feeding ticks. Belperron AA; Bockenstedt LK Infect Immun; 2001 Oct; 69(10):6456-62. PubMed ID: 11553590 [TBL] [Abstract][Full Text] [Related]
6. Salivary gland changes and host antibody responses associated with feeding of male lone star ticks (Acari:Ixodidae). Sanders ML; Scott AL; Glass GE; Schwartz BS J Med Entomol; 1996 Jul; 33(4):628-34. PubMed ID: 8699458 [TBL] [Abstract][Full Text] [Related]
7. The Central Role of Salivary Metalloproteases in Host Acquired Resistance to Tick Feeding. Perner J; Helm D; Haberkant P; Hatalova T; Kropackova S; Ribeiro JM; Kopacek P Front Cell Infect Microbiol; 2020; 10():563349. PubMed ID: 33312963 [TBL] [Abstract][Full Text] [Related]
8. Interaction of primary mast cells with Borrelia burgdorferi (sensu stricto): role in transmission and dissemination in C57BL/6 mice. Bernard Q; Wang Z; Di Nardo A; Boulanger N Parasit Vectors; 2017 Jun; 10(1):313. PubMed ID: 28655322 [TBL] [Abstract][Full Text] [Related]
9. Immunoproteomic identification of antigenic salivary biomarkers detected by Ixodes ricinus-exposed rabbit sera. Vu Hai V; Pages F; Boulanger N; Audebert S; Parola P; Almeras L Ticks Tick Borne Dis; 2013 Sep; 4(5):459-68. PubMed ID: 23890749 [TBL] [Abstract][Full Text] [Related]
10. Discovery of the Lyme disease spirochete and its relation to tick vectors. Burgdorfer W Yale J Biol Med; 1984; 57(4):515-20. PubMed ID: 6516454 [TBL] [Abstract][Full Text] [Related]
11. Entomologic and demographic correlates of anti-tick saliva antibody in a prospective study of tick bite subjects in Westchester County, New York. Schwartz BS; Nadelman RB; Fish D; Childs JE; Forseter G; Wormser GP Am J Trop Med Hyg; 1993 Jan; 48(1):50-7. PubMed ID: 8427388 [TBL] [Abstract][Full Text] [Related]
12. Use of quantitative PCR to measure density of Borrelia burgdorferi in the midgut and salivary glands of feeding tick vectors. Piesman J; Schneider BS; Zeidner NS J Clin Microbiol; 2001 Nov; 39(11):4145-8. PubMed ID: 11682544 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic analysis of the tick midgut and salivary gland responses upon repeated blood-feeding on a vertebrate host. Medina JM; Jmel MA; Cuveele B; Gómez-Martín C; Aparicio-Puerta E; Mekki I; Kotál J; Martins LA; Hackenberg M; Bensaoud C; Kotsyfakis M Front Cell Infect Microbiol; 2022; 12():919786. PubMed ID: 35992165 [TBL] [Abstract][Full Text] [Related]
14. Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Ohnishi J; Piesman J; de Silva AM Proc Natl Acad Sci U S A; 2001 Jan; 98(2):670-5. PubMed ID: 11209063 [TBL] [Abstract][Full Text] [Related]
15. Tick-borne pathogen detection in midgut and salivary glands of adult Ixodes ricinus. Lejal E; Moutailler S; Šimo L; Vayssier-Taussat M; Pollet T Parasit Vectors; 2019 Apr; 12(1):152. PubMed ID: 30940200 [TBL] [Abstract][Full Text] [Related]
16. Antibodies of patients with Lyme disease to components of the Ixodes dammini spirochete. Barbour AG; Burgdorfer W; Grunwaldt E; Steere AC J Clin Invest; 1983 Aug; 72(2):504-15. PubMed ID: 6348092 [TBL] [Abstract][Full Text] [Related]
17. The abundance of the Lyme disease pathogen Borrelia afzelii declines over time in the tick vector Ixodes ricinus. Jacquet M; Genné D; Belli A; Maluenda E; Sarr A; Voordouw MJ Parasit Vectors; 2017 May; 10(1):257. PubMed ID: 28545520 [TBL] [Abstract][Full Text] [Related]
18. The spirochetal etiology of erythema chronicum migrans Afzelius. Asbrink E; Hederstedt B; Hovmark A Acta Derm Venereol; 1984; 64(4):291-5. PubMed ID: 6209885 [TBL] [Abstract][Full Text] [Related]
19. Ultrastructural evidence of the ehrlichial developmental cycle in naturally infected Ixodes persulcatus ticks in the course of coinfection with Rickettsia, Borrelia, and a flavivirus. Popov VL; Korenberg EI; Nefedova VV; Han VC; Wen JW; Kovalevskii YV; Gorelova NB; Walker DH Vector Borne Zoonotic Dis; 2007; 7(4):699-716. PubMed ID: 18171109 [TBL] [Abstract][Full Text] [Related]
20. Excretion of host immunoglobulin in tick saliva and detection of IgG-binding proteins in tick haemolymph and salivary glands. Wang H; Nuttall PA Parasitology; 1994 Nov; 109 ( Pt 4)():525-30. PubMed ID: 7794319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]