These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29151638)

  • 21. Scale Up Studies for Polyhydroxyalkanoate Production by a
    Wagle AR; Dixit YM; Vakil BV
    Indian J Microbiol; 2019 Sep; 59(3):383-386. PubMed ID: 31388219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of short-chain-length polyhydroxyalkanoate accumulation in Bacillus aryabhattai.
    Balakrishna Pillai A; Jaya Kumar A; Thulasi K; Kumarapillai H
    Braz J Microbiol; 2017; 48(3):451-460. PubMed ID: 28359856
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradable Polymeric Substances Produced by a Marine Bacterium from a Surplus Stream of the Biodiesel Industry.
    Bhattacharya S; Dubey S; Singh P; Shrivastava A; Mishra S
    Bioengineering (Basel); 2016 Nov; 3(4):. PubMed ID: 28952596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate).
    Kenny ST; Runic JN; Kaminsky W; Woods T; Babu RP; Keely CM; Blau W; O'Connor KE
    Environ Sci Technol; 2008 Oct; 42(20):7696-701. PubMed ID: 18983095
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polyhydroxyalkanoate production by antarctic soil bacteria isolated from Casey Station and Signy Island.
    Goh YS; Tan IK
    Microbiol Res; 2012 Apr; 167(4):211-9. PubMed ID: 21945102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of co-polymers of polyhydroxyalkanoates by regulating the hydrolysis of biowastes.
    Kumar P; Ray S; Kalia VC
    Bioresour Technol; 2016 Jan; 200():413-9. PubMed ID: 26512866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Standardization of biopolymer production from seaweed associative bacteria.
    R R; R SD; A M; V RK
    Int J Biol Macromol; 2017 Sep; 102():550-564. PubMed ID: 28404223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Bistable Behaviour of Pseudomonas putida KT2440 during PHA Depolymerization under Carbon Limitation.
    Karmann S; Panke S; Zinn M
    Bioengineering (Basel); 2017 Jun; 4(2):. PubMed ID: 28952537
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polyhydroxyalkanoate (PHA) production from waste.
    Rhu DH; Lee WH; Kim JY; Choi E
    Water Sci Technol; 2003; 48(8):221-8. PubMed ID: 14682590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Screening and identification of polyhydroxyalkanoates producing bacteria and biochemical characterization of their possible application.
    Sangkharak K; Prasertsan P
    J Gen Appl Microbiol; 2012; 58(3):173-82. PubMed ID: 22878735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substrate strategy optimization for polyhydroxyalkanoates producing culture enrichment from crude glycerol.
    Wen Q; Liu B; Li F; Chen Z
    Bioresour Technol; 2020 Sep; 311():123516. PubMed ID: 32428849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prospecting for Marine Bacteria for Polyhydroxyalkanoate Production on Low-Cost Substrates.
    Takahashi RYU; Castilho NAS; Silva MACD; Miotto MC; Lima AOS
    Bioengineering (Basel); 2017 Jun; 4(3):. PubMed ID: 28952539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polyhydroxyalkanoates (PHA) production in bacterial co-culture using glucose and volatile fatty acids as carbon source.
    Munir S; Jamil N
    J Basic Microbiol; 2018 Mar; 58(3):247-254. PubMed ID: 29314110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Polyhydroxyalkanoate (PHA) Synthesis by Glycerol-based Mixed Culture and Its Relation with Oxygen Uptake Rate (OUR)].
    Liu D; Zhang XT; Zhang DJ; Zeng SW; Lu PL
    Huan Jing Ke Xue; 2016 Sep; 37(9):3518-3523. PubMed ID: 29964788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of polyhydroxyalkanoate (PHA)-producing Bacillus spp. using the polymerase chain reaction (PCR).
    Shamala TR; Chandrashekar A; Vijayendra SV; Kshama L
    J Appl Microbiol; 2003; 94(3):369-74. PubMed ID: 12588544
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: evidence of an atypical metabolism in Bacillus megaterium DSM 509.
    Shahid S; Mosrati R; Ledauphin J; Amiel C; Fontaine P; Gaillard JL; Corroler D
    J Biosci Bioeng; 2013 Sep; 116(3):302-8. PubMed ID: 23548274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of mcl-Poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: citrate accumulates at high titer under PHA-producing conditions.
    Poblete-Castro I; Binger D; Oehlert R; Rohde M
    BMC Biotechnol; 2014 Dec; 14():962. PubMed ID: 25532606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of the cycle length on the production of PHA and polyglucose from glycerol by bacterial enrichments in sequencing batch reactors.
    Moralejo-Gárate H; Palmeiro-Sánchez T; Kleerebezem R; Mosquera-Corral A; Campos JL; van Loosdrecht MC
    Biotechnol Bioeng; 2013 Dec; 110(12):3148-55. PubMed ID: 23835920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-cis-dodecanoate synthesized by newly isolated bacteria using crude glycerol.
    Muangwong A; Boontip T; Pachimsawat J; Napathorn SC
    Microb Cell Fact; 2016 Mar; 15():55. PubMed ID: 26988857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acetate-Inducing Metabolic States Enhance Polyhydroxyalkanoate Production in Marine Purple Non-sulfur Bacteria Under Aerobic Conditions.
    Higuchi-Takeuchi M; Numata K
    Front Bioeng Biotechnol; 2019; 7():118. PubMed ID: 31192201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.