These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 29151708)
1. Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. Qian WM; Chu YM J Inequal Appl; 2017; 2017(1):274. PubMed ID: 29151708 [TBL] [Abstract][Full Text] [Related]
2. Optimal inequalities for bounding Toader mean by arithmetic and quadratic means. Zhao TH; Chu YM; Zhang W J Inequal Appl; 2017; 2017(1):26. PubMed ID: 28190939 [TBL] [Abstract][Full Text] [Related]
3. Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean. Ding Q; Zhao T J Inequal Appl; 2017; 2017(1):102. PubMed ID: 28539752 [TBL] [Abstract][Full Text] [Related]
4. Extensions of interpolation between the arithmetic-geometric mean inequality for matrices. Bakherad M; Lashkaripour R; Hajmohamadi M J Inequal Appl; 2017; 2017(1):209. PubMed ID: 28943739 [TBL] [Abstract][Full Text] [Related]
5. Optimal convex combination bounds of geometric and Neuman means for Toader-type mean. Yang YY; Qian WM J Inequal Appl; 2017; 2017(1):201. PubMed ID: 28932099 [TBL] [Abstract][Full Text] [Related]
6. On Kedlaya-type inequalities for weighted means. Páles Z; Pasteczka P J Inequal Appl; 2018; 2018(1):99. PubMed ID: 29720847 [TBL] [Abstract][Full Text] [Related]
7. On rational bounds for the gamma function. Yang ZH; Qian WM; Chu YM; Zhang W J Inequal Appl; 2017; 2017(1):210. PubMed ID: 28955149 [TBL] [Abstract][Full Text] [Related]
8. Optimal bounds for Neuman-Sándor mean in terms of the convex combination of the logarithmic and the second Seiffert means. Chen JJ; Lei JJ; Long BY J Inequal Appl; 2017; 2017(1):251. PubMed ID: 29070934 [TBL] [Abstract][Full Text] [Related]
9. Monotonicity, convexity, and inequalities for the generalized elliptic integrals. Huang T; Tan S; Zhang X J Inequal Appl; 2017; 2017(1):278. PubMed ID: 29170610 [TBL] [Abstract][Full Text] [Related]
10. Monotonicity rule for the quotient of two functions and its application. Yang ZH; Qian WM; Chu YM; Zhang W J Inequal Appl; 2017; 2017(1):106. PubMed ID: 28553056 [TBL] [Abstract][Full Text] [Related]
11. Weighted norm inequalities for Toeplitz type operators associated to generalized Calderón-Zygmund operators. Tang Y; Ban T Springerplus; 2016; 5(1):1352. PubMed ID: 27588245 [TBL] [Abstract][Full Text] [Related]
12. Amos-type bounds for modified Bessel function ratios. Hornik K; Grün B J Math Anal Appl; 2013 Dec; 408(1):91-101. PubMed ID: 24926105 [TBL] [Abstract][Full Text] [Related]
13. On approximating the modified Bessel function of the second kind. Yang ZH; Chu YM J Inequal Appl; 2017; 2017(1):41. PubMed ID: 28250694 [TBL] [Abstract][Full Text] [Related]
14. Monotonicity of the ratio of modified Bessel functions of the first kind with applications. Yang ZH; Zheng SZ J Inequal Appl; 2018; 2018(1):57. PubMed ID: 29568211 [TBL] [Abstract][Full Text] [Related]
15. Can chemotaxis speed up or slow down the spatial spreading in parabolic-elliptic Keller-Segel systems with logistic source? Salako RB; Shen W; Xue S J Math Biol; 2019 Sep; 79(4):1455-1490. PubMed ID: 31324959 [TBL] [Abstract][Full Text] [Related]
16. A new upper bound of geometric constant [Formula: see text]. Li JH; Ling B; Liu SY J Inequal Appl; 2017; 2017(1):203. PubMed ID: 28932101 [TBL] [Abstract][Full Text] [Related]
17. Integral-valued polynomials over sets of algebraic integers of bounded degree. Peruginelli G J Number Theory; 2014 Apr; 137():241-255. PubMed ID: 26949270 [TBL] [Abstract][Full Text] [Related]
18. Modeling hemodynamic forces in carotid artery based on local geometric features. Chen Y; Canton G; Kerwin WS; Chiu B Med Biol Eng Comput; 2016 Sep; 54(9):1437-52. PubMed ID: 26578532 [TBL] [Abstract][Full Text] [Related]
19. Inequalities on an extended Bessel function. Ali RM; Lee SK; Mondal SR J Inequal Appl; 2018; 2018(1):66. PubMed ID: 29606843 [TBL] [Abstract][Full Text] [Related]
20. Nonidentifiability in the presence of factorization for truncated data. Vakulenko-Lagun B; Qian J; Chiou SH; Betensky RA Biometrika; 2019 Sep; 106(3):724-731. PubMed ID: 31427826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]