These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29151843)

  • 21. Image-Based Automated Recognition of 31 Poaceae Species: The Most Relevant Perspectives.
    Rzanny M; Wittich HC; Mäder P; Deggelmann A; Boho D; Wäldchen J
    Front Plant Sci; 2021; 12():804140. PubMed ID: 35154194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms.
    Heidari M; Mirniaharikandehei S; Khuzani AZ; Danala G; Qiu Y; Zheng B
    Int J Med Inform; 2020 Dec; 144():104284. PubMed ID: 32992136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images.
    Feng X; Qing K; Tustison NJ; Meyer CH; Chen Q
    Med Phys; 2019 May; 46(5):2169-2180. PubMed ID: 30830685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computer vision applied to herbarium specimens of German trees: testing the future utility of the millions of herbarium specimen images for automated identification.
    Unger J; Merhof D; Renner S
    BMC Evol Biol; 2016 Nov; 16(1):248. PubMed ID: 27852219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CROPro: a tool for automated cropping of prostate magnetic resonance images.
    Patsanis A; Sunoqrot MRS; Bathen TF; Elschot M
    J Med Imaging (Bellingham); 2023 Mar; 10(2):024004. PubMed ID: 36895761
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MFCIS: an automatic leaf-based identification pipeline for plant cultivars using deep learning and persistent homology.
    Zhang Y; Peng J; Yuan X; Zhang L; Zhu D; Hong P; Wang J; Liu Q; Liu W
    Hortic Res; 2021 Aug; 8(1):172. PubMed ID: 34333519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Deep Learning Approach for Recognizing the Cursive Tamil Characters in Palm Leaf Manuscripts.
    Devi S G; Vairavasundaram S; Teekaraman Y; Kuppusamy R; Radhakrishnan A
    Comput Intell Neurosci; 2022; 2022():3432330. PubMed ID: 35310599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A CNN-based image detector for plant leaf diseases classification.
    Falaschetti L; Manoni L; Di Leo D; Pau D; Tomaselli V; Turchetti C
    HardwareX; 2022 Oct; 12():e00363. PubMed ID: 36217500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leaf-Counting in Monocot Plants Using Deep Regression Models.
    Xie X; Ge Y; Walia H; Yang J; Yu H
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification.
    Chatterjee S; Dey D; Munshi S
    Comput Methods Programs Biomed; 2019 Sep; 178():201-218. PubMed ID: 31416550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PhenoBot: an automated system for leaf area analysis using deep learning.
    Richardson GA; Lohani HK; Potnuru C; Donepudi LP; Pankajakshan P
    Planta; 2023 Jan; 257(2):36. PubMed ID: 36627492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging.
    Fantini I; Yasuda C; Bento M; Rittner L; Cendes F; Lotufo R
    Comput Med Imaging Graph; 2021 Jun; 90():101897. PubMed ID: 33770561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards Automated Analysis of Grain Spikes in Greenhouse Images Using Neural Network Approaches: A Comparative Investigation of Six Methods.
    Ullah S; Henke M; Narisetti N; Panzarová K; Trtílek M; Hejatko J; Gladilin E
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833515
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Classification and segmentation of intracardiac masses in cardiac tumor echocardiograms.
    Strzelecki M; Materka A; Drozdz J; Krzeminska-Pakula M; Kasprzak JD
    Comput Med Imaging Graph; 2006 Mar; 30(2):95-107. PubMed ID: 16476535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decision Fusion-Based Fetal Ultrasound Image Plane Classification Using Convolutional Neural Networks.
    Sridar P; Kumar A; Quinton A; Nanan R; Kim J; Krishnakumar R
    Ultrasound Med Biol; 2019 May; 45(5):1259-1273. PubMed ID: 30826153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plant leaf tooth feature extraction.
    Wang H; Tian D; Li C; Tian Y; Zhou H
    PLoS One; 2019; 14(2):e0204714. PubMed ID: 30759085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computerized detection of leukocytes in microscopic leukorrhea images.
    Zhang J; Zhong Y; Wang X; Ni G; Du X; Liu J; Liu L; Liu Y
    Med Phys; 2017 Sep; 44(9):4620-4629. PubMed ID: 28555888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.