These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 29152020)

  • 41. Thermal Conductivity of Polymers and Their Nanocomposites.
    Xu X; Chen J; Zhou J; Li B
    Adv Mater; 2018 Apr; 30(17):e1705544. PubMed ID: 29573283
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of nanocellulose in industrial and pharmaceutical sectors - A review.
    Pradeep HK; Patel DH; Onkarappa HS; Pratiksha CC; Prasanna GD
    Int J Biol Macromol; 2022 May; 207():1038-1047. PubMed ID: 35364203
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermally Conductive and Electrically Insulating Polymer-Based Composites Heat Sinks Fabricated by Fusion Deposition Modeling.
    Bagatella S; Cereti A; Manarini F; Cavallaro M; Suriano R; Levi M
    Polymers (Basel); 2024 Feb; 16(3):. PubMed ID: 38337321
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modeling the Thermal Conductivity Inhomogeneities of Injection-Molded Particle-Filled Composites, Caused by Segregation.
    Suplicz A; Semperger OV; Kovács JG
    Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31623099
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly Thermally Conductive Composite Papers Prepared Based on the Thought of Bioinspired Engineering.
    Yao Y; Zeng X; Sun R; Xu JB; Wong CP
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15645-53. PubMed ID: 27253387
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intrinsically thermally conductive polymers.
    Roy R; Stevens KC; Treaster KA; Sumerlin BS; McGaughey AJH; Malen JA; Evans AM
    Mater Horiz; 2024 Jul; 11(14):3267-3286. PubMed ID: 38747574
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Comprehensive Review on the Thermal Stability Assessment of Polymers and Composites for Aeronautics and Space Applications.
    Barra G; Guadagno L; Raimondo M; Santonicola MG; Toto E; Vecchio Ciprioti S
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765641
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of thermally conductive and electrically insulating polymer composites with isotropic thermal conductivity by constructing a three-dimensional interconnected network.
    Yuan H; Wang Y; Li T; Wang Y; Ma P; Zhang H; Yang W; Chen M; Dong W
    Nanoscale; 2019 Jun; 11(23):11360-11368. PubMed ID: 31166353
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube.
    Jung H; Yu S; Bae NS; Cho SM; Kim RH; Cho SH; Hwang I; Jeong B; Ryu JS; Hwang J; Hong SM; Koo CM; Park C
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15256-62. PubMed ID: 26120871
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Emerging Flexible Thermally Conductive Films: Mechanism, Fabrication, Application.
    Feng CP; Wei F; Sun KY; Wang Y; Lan HB; Shang HJ; Ding FZ; Bai L; Yang J; Yang W
    Nanomicro Lett; 2022 Jun; 14(1):127. PubMed ID: 35699776
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polyethylene nanofibres with very high thermal conductivities.
    Shen S; Henry A; Tong J; Zheng R; Chen G
    Nat Nanotechnol; 2010 Apr; 5(4):251-5. PubMed ID: 20208547
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polymeric Self-Assembled Monolayers Anomalously Improve Thermal Transport across Graphene/Polymer Interfaces.
    Zhang L; Liu L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28949-28958. PubMed ID: 28766936
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gelation mechanism of cellulose nanofibre gels: A colloids and interfacial perspective.
    Mendoza L; Batchelor W; Tabor RF; Garnier G
    J Colloid Interface Sci; 2018 Jan; 509():39-46. PubMed ID: 28881204
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development and Perspectives of Thermal Conductive Polymer Composites.
    Wang J; Hu L; Li W; Ouyang Y; Bai L
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296762
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly Electroconductive Nanopapers Based on Nanocellulose and Copper Nanowires: A New Generation of Flexible and Sustainable Electrical Materials.
    Pinto RJB; Martins MA; Lucas JMF; Vilela C; Sales AJM; Costa LC; Marques PAAP; Freire CSR
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34208-34216. PubMed ID: 32588615
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chemical Modification of Cellulose Nanofibers for the Production of Highly Thermal Resistant and Optically Transparent Nanopaper for Paper Devices.
    Yagyu H; Saito T; Isogai A; Koga H; Nogi M
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):22012-7. PubMed ID: 26402324
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phonon and heat transport control using pillar-based phononic crystals.
    Anufriev R; Nomura M
    Sci Technol Adv Mater; 2018; 19(1):863-870. PubMed ID: 30479674
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation, Properties and Mechanisms of Carbon Fiber/Polymer Composites for Thermal Management Applications.
    Ali Z; Gao Y; Tang B; Wu X; Wang Y; Li M; Hou X; Li L; Jiang N; Yu J
    Polymers (Basel); 2021 Jan; 13(1):. PubMed ID: 33466509
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural Design and Research Progress of Thermally Conductive Polyimide Film - A Review.
    Tao K; Sun G; Feng C; Liu G; Li Y; Chen R; Wang J; Han S
    Macromol Rapid Commun; 2023 Jul; 44(13):e2300060. PubMed ID: 37014631
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermal Diffusion Films with In-Plane Anisotropy by Aligning Carbon Fibers in a Cellulose Nanofiber Matrix.
    Uetani K; Takahashi K; Watanabe R; Tsuneyasu S; Satoh T
    ACS Appl Mater Interfaces; 2022 Jul; 14(29):33903-11. PubMed ID: 35857433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.