These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29152450)

  • 1. Studying slippage on pushing applications with snake robots.
    Reyes F; Ma S
    Robotics Biomim; 2017; 4(1):9. PubMed ID: 29152450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU.
    Zhao X; Dou L; Su Z; Liu N
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29547515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot.
    Omisore OM; Han S; Ren L; Zhang N; Ivanov K; Elazab A; Wang L
    Biomed Eng Online; 2017 Aug; 16(1):93. PubMed ID: 28764713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collaborative robots (cobots) for disaster risk resilience: a framework for swarm of snake robots in delivering first aid in emergency situations.
    Moosavi SKR; Zafar MH; Sanfilippo F
    Front Robot AI; 2024; 11():1362294. PubMed ID: 38500802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deeply-learnt damped least-squares (DL-DLS) method for inverse kinematics of snake-like robots.
    Omisore OM; Han S; Ren L; Elazab A; Hui L; Abdelhamid T; Azeez NA; Wang L
    Neural Netw; 2018 Nov; 107():34-47. PubMed ID: 30241968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lateral Oscillation and Body Compliance Help Snakes and Snake Robots Stably Traverse Large, Smooth Obstacles.
    Fu Q; Gart SW; Mitchel TW; Kim JS; Chirikjian GS; Li C
    Integr Comp Biol; 2020 Jul; 60(1):171-179. PubMed ID: 32215569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model Predictive Torque Control for Velocity Tracking of a Four-Wheeled Climbing Robot.
    Santos HB; Teixeira MAS; Dalmedico N; de Oliveira AS; Neves-Jr F; Ramos JE; de Arruda LVR
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33321689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tracked robot with novel bio-inspired passive "legs".
    Sun B; Jing X
    Robotics Biomim; 2017; 4(1):18. PubMed ID: 29201601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact feedback helps snake robots propel against uneven terrain using vertical bending.
    Fu Q; Li C
    Bioinspir Biomim; 2023 Aug; 18(5):. PubMed ID: 37433307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait Generation Method of Snake Robot Based on Main Characteristic Curve Fitting.
    Tang C; Sun L; Zhou G; Shu X; Tang H; Wu H
    Biomimetics (Basel); 2023 Mar; 8(1):. PubMed ID: 36975335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unified Approach to the Motion Design for a Snake Robot Negotiating Complicated Pipe Structures.
    Inazawa M; Takemori T; Tanaka M; Matsuno F
    Front Robot AI; 2021; 8():629368. PubMed ID: 34012981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion Planning and Iterative Learning Control of a Modular Soft Robotic Snake.
    Luo M; Wan Z; Sun Y; Skorina EH; Tao W; Chen F; Gopalka L; Yang H; Onal CD
    Front Robot AI; 2020; 7():599242. PubMed ID: 33501359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retina-Based Pipe-Like Object Tracking Implemented Through Spiking Neural Network on a Snake Robot.
    Jiang Z; Bing Z; Huang K; Knoll A
    Front Neurorobot; 2019; 13():29. PubMed ID: 31191288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized Design, Modeling and Control Methodology for a Snake-like Aerial Robot.
    Zhao M; Nishio T
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotic modelling of snake traversing large, smooth obstacles reveals stability benefits of body compliance.
    Fu Q; Li C
    R Soc Open Sci; 2020 Feb; 7(2):191192. PubMed ID: 32257305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low impedance walking robots.
    Pratt GA
    Integr Comp Biol; 2002 Feb; 42(1):174-81. PubMed ID: 21708707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. S-shaped rolling gait designed using curve transformations of a snake robot for climbing on a bifurcated pipe.
    Lu J; Tang C; Hu E; Li Z
    Bioinspir Biomim; 2024 Apr; 19(3):. PubMed ID: 38507791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Path following control of planar snake robots using virtual holonomic constraints: theory and experiments.
    Rezapour E; Pettersen KY; Liljebäck P; Gravdahl JT; Kelasidi E
    Robotics Biomim; 2014; 1(1):3. PubMed ID: 26613075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired 3D-Printed Snakeskins Enable Effective Serpentine Locomotion of a Soft Robotic Snake.
    Qi X; Gao T; Tan X
    Soft Robot; 2023 Jun; 10(3):568-579. PubMed ID: 36454198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion and Trajectory Constraints Control Modeling for Flexible Surgical Robotic Systems.
    Omisore OM; Han S; Al-Handarish Y; Du W; Duan W; Akinyemi TO; Wang L
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32272641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.