BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 29153030)

  • 1. Cytotoxicity Study of Textile Fabrics Impregnated With CuO Nanoparticles in Mammalian Cells.
    Singh G; Beddow J; Mee C; Maryniak L; Joyce EM; Mason TJ
    Int J Toxicol; 2017; 36(6):478-484. PubMed ID: 29153030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photo and biocatalytic activities along with UV protection properties on polyester fabric through green in-situ synthesis of cauliflower-like CuO nanoparticles.
    Rezaie AB; Montazer M; Rad MM
    J Photochem Photobiol B; 2017 Nov; 176():100-111. PubMed ID: 28985611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imparting Pharmaceutical Applications to the Surface of Fabrics for Wound and Skin Care by Ultrasonic Waves.
    Gedanken A; Perkas N; Perelshtein I; Lipovsky A
    Curr Med Chem; 2018; 25(41):5739-5754. PubMed ID: 29284390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosurfactant-capped CuO nanoparticles coated cotton/polypropylene fabrics toward antimicrobial textile applications.
    Haripriya P; Revathy MP; Kumar MS; Navaneeth P; Suneesh PV; T G SB; Darbha VRK
    Nanotechnology; 2024 Jan; 35(16):. PubMed ID: 38198713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells.
    Kung ML; Hsieh SL; Wu CC; Chu TH; Lin YC; Yeh BW; Hsieh S
    Nanoscale; 2015 Feb; 7(5):1820-9. PubMed ID: 25521936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Airborne Nanoparticle Release and Toxicological Risk from Metal-Oxide-Coated Textiles: Toward a Multiscale Safe-by-Design Approach.
    Mantecca P; Kasemets K; Deokar A; Perelshtein I; Gedanken A; Bahk YK; Kianfar B; Wang J
    Environ Sci Technol; 2017 Aug; 51(16):9305-9317. PubMed ID: 28715175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper(II) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response.
    Piret JP; Jacques D; Audinot JN; Mejia J; Boilan E; Noël F; Fransolet M; Demazy C; Lucas S; Saout C; Toussaint O
    Nanoscale; 2012 Nov; 4(22):7168-84. PubMed ID: 23070296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytotoxicity and cellular mechanisms of toxicity of CuO NPs in mussel cells in vitro and comparative sensitivity with human cells.
    Katsumiti A; Thorley AJ; Arostegui I; Reip P; Valsami-Jones E; Tetley TD; Cajaraville MP
    Toxicol In Vitro; 2018 Apr; 48():146-158. PubMed ID: 29408664
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Henson TE; Navratilova J; Tennant AH; Bradham KD; Rogers KR; Hughes MF
    Nanotoxicology; 2019 Aug; 13(6):795-811. PubMed ID: 30938207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells.
    Akhtar MJ; Kumar S; Alhadlaq HA; Alrokayan SA; Abu-Salah KM; Ahamed M
    Toxicol Ind Health; 2016 May; 32(5):809-21. PubMed ID: 24311626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential toxicity of copper (II) oxide nanoparticles of similar hydrodynamic diameter on human differentiated intestinal Caco-2 cell monolayers is correlated in part to copper release and shape.
    Piret JP; Vankoningsloo S; Mejia J; Noël F; Boilan E; Lambinon F; Zouboulis CC; Masereel B; Lucas S; Saout C; Toussaint O
    Nanotoxicology; 2012 Nov; 6(7):789-803. PubMed ID: 22023055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of the Cytotoxicity of Copper (II) Oxide Nanoparticles by Coating with a Surface-Binding Peptide.
    Ishida N; Hosokawa Y; Imaeda T; Hatanaka T
    Appl Biochem Biotechnol; 2020 Feb; 190(2):645-659. PubMed ID: 31422560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phyto-mediated synthesized multifunctional Zn/CuO NPs hybrid nanoparticles for enhanced activity for kidney cancer therapy: A complete physical and biological analysis.
    Xue Y; Yu G; Shan Z; Li Z
    J Photochem Photobiol B; 2018 Sep; 186():131-136. PubMed ID: 30036830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of surface-modified copper oxide nanoparticles in a mouse macrophage cell line: Interplay of particles, surface coating and particle dissolution.
    Líbalová H; Costa PM; Olsson M; Farcal L; Ortelli S; Blosi M; Topinka J; Costa AL; Fadeel B
    Chemosphere; 2018 Apr; 196():482-493. PubMed ID: 29324388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes.
    Bulcke F; Thiel K; Dringen R
    Nanotoxicology; 2014 Nov; 8(7):775-85. PubMed ID: 23889294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-vitro evaluation of copper/copper oxide nanoparticles cytotoxicity and genotoxicity in normal and cancer lung cell lines.
    Fahmy HM; Ebrahim NM; Gaber MH
    J Trace Elem Med Biol; 2020 Jul; 60():126481. PubMed ID: 32135445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of copper oxide nanomaterials on differentiated and undifferentiated Caco-2 intestinal epithelial cells; assessment of cytotoxicity, barrier integrity, cytokine production and nanomaterial penetration.
    Ude VC; Brown DM; Viale L; Kanase N; Stone V; Johnston HJ
    Part Fibre Toxicol; 2017 Aug; 14(1):31. PubMed ID: 28835236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron-Doping of Copper Oxide Nanoparticles Lowers Their Toxic Potential on C6 Glioma Cells.
    Joshi A; Naatz H; Faber K; Pokhrel S; Dringen R
    Neurochem Res; 2020 Apr; 45(4):809-824. PubMed ID: 31997104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens.
    Shi J; Peng C; Yang Y; Yang J; Zhang H; Yuan X; Chen Y; Hu T
    Nanotoxicology; 2014 Mar; 8(2):179-88. PubMed ID: 23311584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro evaluation of copper oxide nanoparticle-induced cytotoxicity and oxidative stress using human embryonic kidney cells.
    Reddy ARN; Lonkala S
    Toxicol Ind Health; 2019 Feb; 35(2):159-164. PubMed ID: 30803393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.