These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 29153393)

  • 21. Protein-based inheritance.
    Manjrekar J; Shah H
    Semin Cell Dev Biol; 2020 Jan; 97():138-155. PubMed ID: 31344459
    [TBL] [Abstract][Full Text] [Related]  

  • 22. THE GENETICS OF EPIGENETIC INHERITANCE: MODES, MOLECULES, AND MECHANISMS.
    Schaefer S; Nadeau JH
    Q Rev Biol; 2015 Dec; 90(4):381-415. PubMed ID: 26714351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How epigenomics brings phenotype into being.
    Martín-Subero JI
    Pediatr Endocrinol Rev; 2011 Sep; 9 Suppl 1():506-10. PubMed ID: 22423506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transgenerational epigenetic inheritance: adaptation through the germline epigenome?
    Prokopuk L; Western PS; Stringer JM
    Epigenomics; 2015 Aug; 7(5):829-46. PubMed ID: 26367077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [PSI+]: an epigenetic modulator of translation termination efficiency.
    Serio TR; Lindquist SL
    Annu Rev Cell Dev Biol; 1999; 15():661-703. PubMed ID: 10611975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions among prions and prion "strains" in yeast.
    Bradley ME; Edskes HK; Hong JY; Wickner RB; Liebman SW
    Proc Natl Acad Sci U S A; 2002 Dec; 99 Suppl 4(Suppl 4):16392-9. PubMed ID: 12149514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of Small Critical Regions of Swi1 Conferring Prion Formation, Maintenance, and Transmission.
    Valtierra S; Du Z; Li L
    Mol Cell Biol; 2017 Oct; 37(20):. PubMed ID: 28716950
    [No Abstract]   [Full Text] [Related]  

  • 28. Blurring the germline: Genome editing and transgenerational epigenetic inheritance.
    Lewens T
    Bioethics; 2020 Jan; 34(1):7-15. PubMed ID: 31264238
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigating protein conformation-based inheritance and disease in yeast.
    Lindquist S; Krobitsch S; Li L; Sondheimer N
    Philos Trans R Soc Lond B Biol Sci; 2001 Feb; 356(1406):169-76. PubMed ID: 11260797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epigenetic inheritance in adaptive evolution.
    Sabarís G; Fitz-James MH; Cavalli G
    Ann N Y Acad Sci; 2023 Jun; 1524(1):22-29. PubMed ID: 37002544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-perpetuating changes in Sup35 protein conformation as a mechanism of heredity in yeast.
    Serio TR; Cashikar AG; Kowal AS; Sawicki GJ; Lindquist SL
    Biochem Soc Symp; 2001; (68):35-43. PubMed ID: 11573346
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transgenerational Inheritance of Environmentally Induced Epigenetic Alterations during Mammalian Development.
    Legoff L; D'Cruz SC; Tevosian S; Primig M; Smagulova F
    Cells; 2019 Dec; 8(12):. PubMed ID: 31816913
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrinsically Disordered Proteins Drive Emergence and Inheritance of Biological Traits.
    Chakrabortee S; Byers JS; Jones S; Garcia DM; Bhullar B; Chang A; She R; Lee L; Fremin B; Lindquist S; Jarosz DF
    Cell; 2016 Oct; 167(2):369-381.e12. PubMed ID: 27693355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits.
    True HL; Berlin I; Lindquist SL
    Nature; 2004 Sep; 431(7005):184-7. PubMed ID: 15311209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MicroRNAs and DNA methylation as epigenetic regulators of mitosis, meiosis and spermiogenesis.
    Yao C; Liu Y; Sun M; Niu M; Yuan Q; Hai Y; Guo Y; Chen Z; Hou J; Liu Y; He Z
    Reproduction; 2015 Jul; 150(1):R25-34. PubMed ID: 25852155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Epigenome and Beyond: How Does Non-genetic Inheritance Change Our View of Evolution?
    Brodie ED; Gregory B; Lisch D; Riddle NC
    Integr Comp Biol; 2022 Feb; 61(6):2199-2207. PubMed ID: 34028538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of pre-existing aggregates in Hsp104-dependent polyglutamine aggregate formation and epigenetic change of yeast prions.
    Kimura Y; Koitabashi S; Kakizuka A; Fujita T
    Genes Cells; 2004 Aug; 9(8):685-96. PubMed ID: 15298677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [PSI+], SUP35, and chaperones.
    Serio TR; Lindquist SL
    Adv Protein Chem; 2001; 57():335-66. PubMed ID: 11447696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Yeast prions: Paramutation at the protein level?
    Tuite MF
    Semin Cell Dev Biol; 2015 Aug; 44():51-61. PubMed ID: 26386407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative epigenetics: relevance to the regulation of production and health traits in cattle.
    Doherty R; O' Farrelly C; Meade KG
    Anim Genet; 2014 Aug; 45 Suppl 1():3-14. PubMed ID: 24984755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.