These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
886 related articles for article (PubMed ID: 29153408)
1. AMPK: Sensing Glucose as well as Cellular Energy Status. Lin SC; Hardie DG Cell Metab; 2018 Feb; 27(2):299-313. PubMed ID: 29153408 [TBL] [Abstract][Full Text] [Related]
2. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Zhang CS; Hawley SA; Zong Y; Li M; Wang Z; Gray A; Ma T; Cui J; Feng JW; Zhu M; Wu YQ; Li TY; Ye Z; Lin SY; Yin H; Piao HL; Hardie DG; Lin SC Nature; 2017 Aug; 548(7665):112-116. PubMed ID: 28723898 [TBL] [Abstract][Full Text] [Related]
3. Transient Receptor Potential V Channels Are Essential for Glucose Sensing by Aldolase and AMPK. Li M; Zhang CS; Zong Y; Feng JW; Ma T; Hu M; Lin Z; Li X; Xie C; Wu Y; Jiang D; Li Y; Zhang C; Tian X; Wang W; Yang Y; Chen J; Cui J; Wu YQ; Chen X; Liu QF; Wu J; Lin SY; Ye Z; Liu Y; Piao HL; Yu L; Zhou Z; Xie XS; Hardie DG; Lin SC Cell Metab; 2019 Sep; 30(3):508-524.e12. PubMed ID: 31204282 [TBL] [Abstract][Full Text] [Related]
4. Methods to Study Lysosomal AMPK Activation. Zhang CS; Li M; Lin SC Methods Enzymol; 2017; 587():465-480. PubMed ID: 28253973 [TBL] [Abstract][Full Text] [Related]
5. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Zhang CS; Jiang B; Li M; Zhu M; Peng Y; Zhang YL; Wu YQ; Li TY; Liang Y; Lu Z; Lian G; Liu Q; Guo H; Yin Z; Ye Z; Han J; Wu JW; Yin H; Lin SY; Lin SC Cell Metab; 2014 Sep; 20(3):526-40. PubMed ID: 25002183 [TBL] [Abstract][Full Text] [Related]
6. Determining AMPK Activation via the Lysosomal v-ATPase-Ragulator-AXIN/LKB1 Axis. Zhang CS; Li M; Zong Y; Lin SC Methods Mol Biol; 2018; 1732():393-411. PubMed ID: 29480489 [TBL] [Abstract][Full Text] [Related]
7. The aldolase inhibitor aldometanib mimics glucose starvation to activate lysosomal AMPK. Zhang CS; Li M; Wang Y; Li X; Zong Y; Long S; Zhang M; Feng JW; Wei X; Liu YH; Zhang B; Wu J; Zhang C; Lian W; Ma T; Tian X; Qu Q; Yu Y; Xiong J; Liu DT; Wu Z; Zhu M; Xie C; Wu Y; Xu Z; Yang C; Chen J; Huang G; He Q; Huang X; Zhang L; Sun X; Liu Q; Ghafoor A; Gui F; Zheng K; Wang W; Wang ZC; Yu Y; Zhao Q; Lin SY; Wang ZX; Piao HL; Deng X; Lin SC Nat Metab; 2022 Oct; 4(10):1369-1401. PubMed ID: 36217034 [TBL] [Abstract][Full Text] [Related]
8. AMP-activated protein kinase: a key regulator of energy balance with many roles in human disease. Grahame Hardie D J Intern Med; 2014 Dec; 276(6):543-59. PubMed ID: 24824502 [TBL] [Abstract][Full Text] [Related]
9. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Zhang YL; Guo H; Zhang CS; Lin SY; Yin Z; Peng Y; Luo H; Shi Y; Lian G; Zhang C; Li M; Ye Z; Ye J; Han J; Li P; Wu JW; Lin SC Cell Metab; 2013 Oct; 18(4):546-55. PubMed ID: 24093678 [TBL] [Abstract][Full Text] [Related]
10. Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing. Gu X; Yan Y; Novick SJ; Kovach A; Goswami D; Ke J; Tan MHE; Wang L; Li X; de Waal PW; Webb MR; Griffin PR; Xu HE; Melcher K J Biol Chem; 2017 Jul; 292(30):12653-12666. PubMed ID: 28615457 [TBL] [Abstract][Full Text] [Related]
11. AMP-activated protein kinase - not just an energy sensor. Hardie DG; Lin SC F1000Res; 2017; 6():1724. PubMed ID: 29034085 [TBL] [Abstract][Full Text] [Related]
12. Sensing of energy and nutrients by AMP-activated protein kinase. Hardie DG Am J Clin Nutr; 2011 Apr; 93(4):891S-6. PubMed ID: 21325438 [TBL] [Abstract][Full Text] [Related]
13. β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Oakhill JS; Chen ZP; Scott JW; Steel R; Castelli LA; Ling N; Macaulay SL; Kemp BE Proc Natl Acad Sci U S A; 2010 Nov; 107(45):19237-41. PubMed ID: 20974912 [TBL] [Abstract][Full Text] [Related]
14. Structure and Physiological Regulation of AMPK. Yan Y; Zhou XE; Xu HE; Melcher K Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30423971 [TBL] [Abstract][Full Text] [Related]
15. AMP-activated protein kinase: a cellular energy sensor with a key role in metabolic disorders and in cancer. Hardie DG Biochem Soc Trans; 2011 Jan; 39(1):1-13. PubMed ID: 21265739 [TBL] [Abstract][Full Text] [Related]
16. Structural and biochemical insights into the allosteric activation mechanism of AMP-activated protein kinase. Li J; Li S; Wang F; Xin F Chem Biol Drug Des; 2017 May; 89(5):663-669. PubMed ID: 27809416 [TBL] [Abstract][Full Text] [Related]
17. Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolism. Hardie DG Proc Nutr Soc; 2011 Feb; 70(1):92-9. PubMed ID: 21067629 [TBL] [Abstract][Full Text] [Related]
18. Glucose availability but not changes in pancreatic hormones sensitizes hepatic AMPK activity during nutritional transition in rodents. Huet C; Boudaba N; Guigas B; Viollet B; Foretz M J Biol Chem; 2020 May; 295(18):5836-5849. PubMed ID: 32184359 [TBL] [Abstract][Full Text] [Related]
19. AMP-activated protein kinase can be allosterically activated by ADP but AMP remains the key activating ligand. Hawley SA; Russell FM; Hardie DG Biochem J; 2024 Apr; 481(8):587-599. PubMed ID: 38592738 [TBL] [Abstract][Full Text] [Related]
20. Keeping the home fires burning: AMP-activated protein kinase. Hardie DG J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29343628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]