BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29154143)

  • 1. Investigation of various factors influencing Raman spectra interpretation with the use of likelihood ratio approach.
    Michalska A; Martyna A; Zadora G
    Forensic Sci Int; 2018 Jan; 282():60-73. PubMed ID: 29154143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpretation of FTIR spectra of polymers and Raman spectra of car paints by means of likelihood ratio approach supported by wavelet transform for reducing data dimensionality.
    Martyna A; Michalska A; Zadora G
    Anal Bioanal Chem; 2015 May; 407(12):3357-76. PubMed ID: 25757825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of blue pigments used in automotive paints by Raman spectroscopy.
    Zięba-Palus J; Michalska A
    J Forensic Sci; 2014 Jul; 59(4):943-9. PubMed ID: 24844185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidential value of polymeric materials-chemometric tactics for spectral data compression combined with likelihood ratio approach.
    Menżyk A; Martyna A; Zadora G
    Analyst; 2017 Oct; 142(20):3867-3888. PubMed ID: 28913520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ identification and analysis of automotive paint pigments using line segment excitation Raman spectroscopy: I. Inorganic topcoat pigments.
    Suzuki EM; Carrabba M
    J Forensic Sci; 2001 Sep; 46(5):1053-69. PubMed ID: 11569543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct identification of various copper phthalocyanine pigments in automotive paints and paint smears by laser desorption ionization mass spectrometry.
    Mukai T; Nakazumi H; Kawabata S; Kusatani M; Nakai S; Honda S
    J Forensic Sci; 2008 Jan; 53(1):107-15. PubMed ID: 18279247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid approach combining chemometrics and likelihood ratio framework for reporting the evidential value of spectra.
    Martyna A; Zadora G; Neocleous T; Michalska A; Dean N
    Anal Chim Acta; 2016 Aug; 931():34-46. PubMed ID: 27282749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The efficiency of micro-Raman spectroscopy in the analysis of complicated mixtures in modern paints: Munch's and Kupka's paintings under study.
    Košařová V; Hradil D; Hradilová J; Čermáková Z; Němec I; Schreiner M
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 156():36-46. PubMed ID: 26641284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical spectroscopic investigation of wavelength and pulse duration effects on laser-induced changes of egg-yolk-based tempera paints.
    Oujja M; Pouli P; Domingo C; Fotakis C; Castillejo M
    Appl Spectrosc; 2010 May; 64(5):528-36. PubMed ID: 20482972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Library Search Prefilters for Vehicle Manufacturers to Assist in the Forensic Examination of Automotive Paints.
    Lavine BK; White CG; Ding T
    Appl Spectrosc; 2018 Mar; 72(3):476-488. PubMed ID: 28959899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A market study of green spray paints by Fourier transform infrared (FTIR) and Raman spectroscopy.
    Buzzini P; Massonnet G
    Sci Justice; 2004; 44(3):123-31. PubMed ID: 15270450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of infrared spectra analyses using a likelihood ratio approach: A practical example of spray paint examination.
    Muehlethaler C; Massonnet G; Hicks T
    Sci Justice; 2016 Mar; 56(2):61-72. PubMed ID: 26976462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maturation grade of coals as revealed by Raman spectroscopy: progress and problems.
    Quirico E; Rouzaud JN; Bonal L; Montagnac G
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2368-77. PubMed ID: 16029859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of laser irradiation on the stability of a photo-sensitive active pharmaceutical ingredient by Raman microscopy.
    Uchida H; Eguchi K; Otsuka M
    J Pharm Biomed Anal; 2012 Nov; 70():259-64. PubMed ID: 22840978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman Spectroscopy to Enhance Investigative Lead Information in Automotive Clearcoats.
    Affadu-Danful GP; Zhong H; Dahal KS; Kalkan K; Zhang L; Lavine BK
    Appl Spectrosc; 2023 Sep; 77(9):1064-1072. PubMed ID: 37525887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic organic pigments of the 20th and 21st century relevant to artist's paints: Raman spectra reference collection.
    Scherrer NC; Zumbuehl S; Delavy F; Fritsch A; Kuehnen R
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):505-24. PubMed ID: 19136293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-section measurements of multilayer automotive paint samples using combined Raman spectroscopy and LIBS.
    Merk V; Werncke W; Pfeifer L
    Analyst; 2022 Nov; 147(23):5470-5476. PubMed ID: 36321853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-enhanced Raman spectroscopy studies of yellow organic dyestuffs and lake pigments in oil paint.
    Mayhew HE; Fabian DM; Svoboda SA; Wustholz KL
    Analyst; 2013 Aug; 138(16):4493-9. PubMed ID: 23722232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Nd:YAG and diode laser irradiation during intracoronal bleaching with sodium perborate: color and Raman spectroscopy analysis.
    Sağlam BC; Koçak MM; Koçak S; Türker SA; Arslan D
    Photomed Laser Surg; 2015 Feb; 33(2):77-81. PubMed ID: 25654643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forensic analysis of architectural finishes using fourier transform infrared and Raman spectroscopy, part II: white paint.
    Bell SE; Fido LA; Speers SJ; Armstrong WJ; Spratt S
    Appl Spectrosc; 2005 Nov; 59(11):1340-6. PubMed ID: 16316511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.