BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29154216)

  • 1. Colorimetric sensing of oxalate based on its inhibitory effect on the reaction of Fe (III) with curcumin nanoparticles.
    Pourreza N; Lotfizadeh N; Golmohammadi H
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 192():251-256. PubMed ID: 29154216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green colorimetric recognition of trace sulfide ions in water samples using curcumin nanoparticle in micelle mediated system.
    Pourreza N; Golmohammadi H
    Talanta; 2014 Feb; 119():181-6. PubMed ID: 24401402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of curcumin nanoparticles in a lab-on-paper device as a simple and green pH probe.
    Pourreza N; Golmohammadi H
    Talanta; 2015 Jan; 131():136-41. PubMed ID: 25281084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Green Chemosensor for Colorimetric Determination of Phosphate Ion in Soil, Bone, and Water Samples Using Curcumin Nanoparticles.
    Pourreza N; Sharifi H; Golmohammadi H
    Anal Sci; 2020 Nov; 36(11):1297-1301. PubMed ID: 32507834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectrophotometric and electrochemical determination of the formation constants of the complexes Curcumin-Fe(III)-water and Curcumin-Fe(II)-water.
    Bernabé-Pineda M; Ramírez-Silva MT; Romero-Romo MA; González-Vergara E; Rojas-Hernández A
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Apr; 60(5):1105-13. PubMed ID: 15084330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of trace amounts of oxalate in vegetable and water samples using a new kinetic-catalytic reaction system.
    Arab Chamjangali M; Sharif-Razavian L; Yousefi M; Amin AH
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(1):112-6. PubMed ID: 19264541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic spectrophotometric method for the determination of trace amounts of oxalate by an activation effect.
    Chamjangali MA; Keley V; Bagherian G
    Anal Sci; 2006 Feb; 22(2):333-6. PubMed ID: 16512434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nanocellulose-based colorimetric assay kit for smartphone sensing of iron and iron-chelating deferoxamine drug in biofluids.
    Faham S; Golmohammadi H; Ghavami R; Khayatian G
    Anal Chim Acta; 2019 Dec; 1087():104-112. PubMed ID: 31585557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Simple Paper-based Colorimetric Device for Rapid and Sensitive Urinary Oxalate Determinations.
    Worramongkona P; Seeda K; Phansomboon P; Ratnarathorn N; Chailapakul O; Dungchai W
    Anal Sci; 2018; 34(1):103-108. PubMed ID: 29321449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colorimetric detection of iron ions (III) based on the highly sensitive plasmonic response of the N-acetyl-L-cysteine-stabilized silver nanoparticles.
    Gao X; Lu Y; He S; Li X; Chen W
    Anal Chim Acta; 2015 Jun; 879():118-25. PubMed ID: 26002486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly selective and sensitive colorimetric determination of Cr
    Shahrivari S; Faridbod F; Ganjali MR
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():189-194. PubMed ID: 29032343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorimetric detection of oxalate in aqueous solution by a pyrogallol red-based Cu
    Inoue K; Aikawa S; Fukushima Y
    Luminescence; 2018 Mar; 33(2):277-281. PubMed ID: 29044910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curcumin nanoparticle doped starch thin film as a green colorimetric sensor for detection of boron.
    Boonkanon C; Phatthanawiwat K; Wongniramaikul W; Choodum A
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 224():117351. PubMed ID: 31336322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colorimetric sensing of palladium ions based on in situ generation of palladium nanoparticles as an activator for the thionine-hydrazine reaction.
    Pourreza N; Abdollahzadeh R
    Talanta; 2019 May; 196():211-216. PubMed ID: 30683353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective sensing of submicromolar iron(III) with 3,3',5,5'-tetramethylbenzidine as a chromogenic probe.
    Zhang L; Du J
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Apr; 158():24-8. PubMed ID: 26783724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective extraction, separation and speciation of iron in different samples using 4-acetyl-5-methyl-1-phenyl-1H-pyrazole-3-carboxylic acid.
    Saçmaci S; Kartal S
    Anal Chim Acta; 2008 Aug; 623(1):46-52. PubMed ID: 18611456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectrophotometric determination of oxalate in urine and plasma with oxalate oxidase.
    Ichiyama A; Nakai E; Funai T; Oda T; Katafuchi R
    J Biochem; 1985 Nov; 98(5):1375-85. PubMed ID: 4086485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct colorimetric biosensing of mercury(II) ion based on aggregation of poly-(γ-glutamic acid)-functionalized gold nanoparticles.
    Guan H; Liu X; Wang W; Liang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():527-32. PubMed ID: 24291429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colorimetric determination of urinary oxalate recovered as calcium oxalate. Application of a simple correction factor for incomplete preciptation.
    Baadenhuijsen H; Jansen AP
    Clin Chim Acta; 1975 Jul; 62(2):315-24. PubMed ID: 1149295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.