These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1006 related articles for article (PubMed ID: 29154692)
1. Landing Kinematics and Kinetics at the Knee During Different Landing Tasks. Heebner NR; Rafferty DM; Wohleber MF; Simonson AJ; Lovalekar M; Reinert A; Sell TC J Athl Train; 2017 Dec; 52(12):1101-1108. PubMed ID: 29154692 [TBL] [Abstract][Full Text] [Related]
2. Volitional Spine Stabilization During a Drop Vertical Jump From Different Landing Heights: Implications for Anterior Cruciate Ligament Injury. Haddas R; Hooper T; James CR; Sizer PS J Athl Train; 2016 Dec; 51(12):1003-1012. PubMed ID: 27874298 [TBL] [Abstract][Full Text] [Related]
3. Changing Sagittal-Plane Landing Styles to Modulate Impact and Tibiofemoral Force Magnitude and Directions Relative to the Tibia. Shimokochi Y; Ambegaonkar JP; Meyer EG J Athl Train; 2016 Sep; 51(9):669-681. PubMed ID: 27723362 [TBL] [Abstract][Full Text] [Related]
4. The effects of three jump landing tasks on kinetic and kinematic measures: implications for ACL injury research. Cruz A; Bell D; McGrath M; Blackburn T; Padua D; Herman D Res Sports Med; 2013; 21(4):330-42. PubMed ID: 24067119 [TBL] [Abstract][Full Text] [Related]
6. Comparison of landing biomechanics between male and female dancers and athletes, part 2: Influence of fatigue and implications for anterior cruciate ligament injury. Liederbach M; Kremenic IJ; Orishimo KF; Pappas E; Hagins M Am J Sports Med; 2014 May; 42(5):1089-95. PubMed ID: 24595401 [TBL] [Abstract][Full Text] [Related]
8. The effects of 2 landing techniques on knee kinematics, kinetics, and performance during stop-jump and side-cutting tasks. Dai B; Garrett WE; Gross MT; Padua DA; Queen RM; Yu B Am J Sports Med; 2015 Feb; 43(2):466-74. PubMed ID: 25367015 [TBL] [Abstract][Full Text] [Related]
14. Kinetic and kinematic differences between first and second landings of a drop vertical jump task: implications for injury risk assessments. Bates NA; Ford KR; Myer GD; Hewett TE Clin Biomech (Bristol); 2013 Apr; 28(4):459-66. PubMed ID: 23562293 [TBL] [Abstract][Full Text] [Related]
15. Relation between peak knee flexion angle and knee ankle kinetics in single-leg jump landing from running: a pilot study on male handball players to prevent ACL injury. Ameer MA; Muaidi QI Phys Sportsmed; 2017 Sep; 45(3):337-343. PubMed ID: 28628348 [TBL] [Abstract][Full Text] [Related]
16. Lower Limb Biomechanics During Single-Leg Landings Following Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. Johnston PT; McClelland JA; Webster KE Sports Med; 2018 Sep; 48(9):2103-2126. PubMed ID: 29949109 [TBL] [Abstract][Full Text] [Related]
17. Timing of lower extremity frontal plane motion differs between female and male athletes during a landing task. Joseph MF; Rahl M; Sheehan J; MacDougall B; Horn E; Denegar CR; Trojian TH; Anderson JM; Kraemer WJ Am J Sports Med; 2011 Jul; 39(7):1517-21. PubMed ID: 21383083 [TBL] [Abstract][Full Text] [Related]
18. Effects of an Intervention Program on Lower Extremity Biomechanics in Stop-Jump and Side-Cutting Tasks. Yang C; Yao W; Garrett WE; Givens DL; Hacke J; Liu H; Yu B Am J Sports Med; 2018 Oct; 46(12):3014-3022. PubMed ID: 30148646 [TBL] [Abstract][Full Text] [Related]
19. Comparison of landing biomechanics between male and female dancers and athletes, part 1: Influence of sex on risk of anterior cruciate ligament injury. Orishimo KF; Liederbach M; Kremenic IJ; Hagins M; Pappas E Am J Sports Med; 2014 May; 42(5):1082-8. PubMed ID: 24590005 [TBL] [Abstract][Full Text] [Related]
20. Landing mechanics between noninjured women and women with anterior cruciate ligament reconstruction during 2 jump tasks. Ortiz A; Olson S; Libby CL; Trudelle-Jackson E; Kwon YH; Etnyre B; Bartlett W Am J Sports Med; 2008 Jan; 36(1):149-57. PubMed ID: 17940142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]