BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29154754)

  • 1. Functional divergence of paralogous transcription factors supported the evolution of biomineralization in echinoderms.
    Khor JM; Ettensohn CA
    Elife; 2017 Nov; 6():. PubMed ID: 29154754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the DNA-binding properties of Alx1, an evolutionarily conserved regulator of skeletogenesis in echinoderms.
    Guerrero-Santoro J; Khor JM; Açıkbaş AH; Jaynes JB; Ettensohn CA
    J Biol Chem; 2021 Jul; 297(1):100901. PubMed ID: 34157281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide identification of binding sites and gene targets of Alx1, a pivotal regulator of echinoderm skeletogenesis.
    Khor JM; Guerrero-Santoro J; Ettensohn CA
    Development; 2019 Aug; 146(16):. PubMed ID: 31331943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transforming a transcription factor.
    Burke RD
    Elife; 2018 Jan; 7():. PubMed ID: 29309030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lessons from a transcription factor: Alx1 provides insights into gene regulatory networks, cellular reprogramming, and cell type evolution.
    Ettensohn CA; Guerrero-Santoro J; Khor JM
    Curr Top Dev Biol; 2022; 146():113-148. PubMed ID: 35152981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton.
    Koga H; Fujitani H; Morino Y; Miyamoto N; Tsuchimoto J; Shibata TF; Nozawa M; Shigenobu S; Ogura A; Tachibana K; Kiyomoto M; Amemiya S; Wada H
    PLoS One; 2016; 11(2):e0149067. PubMed ID: 26866800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architecture and evolution of the
    Khor JM; Ettensohn CA
    Elife; 2022 Feb; 11():. PubMed ID: 35212624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution.
    Dylus DV; Czarkwiani A; Blowes LM; Elphick MR; Oliveri P
    Genome Biol; 2018 Feb; 19(1):26. PubMed ID: 29490679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms.
    McCauley BS; Wright EP; Exner C; Kitazawa C; Hinman VF
    Evodevo; 2012 Aug; 3(1):17. PubMed ID: 22877149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms.
    Shashikant T; Khor JM; Ettensohn CA
    Genesis; 2018 Oct; 56(10):e23253. PubMed ID: 30264451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons.
    Koga H; Matsubara M; Fujitani H; Miyamoto N; Komatsu M; Kiyomoto M; Akasaka K; Wada H
    Dev Genes Evol; 2010 Sep; 220(3-4):107-15. PubMed ID: 20680330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo.
    Ettensohn CA; Illies MR; Oliveri P; De Jong DL
    Development; 2003 Jul; 130(13):2917-28. PubMed ID: 12756175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution.
    Hinman VF; Nguyen AT; Cameron RA; Davidson EH
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13356-61. PubMed ID: 14595011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell type phylogenetics informs the evolutionary origin of echinoderm larval skeletogenic cell identity.
    Erkenbrack EM; Thompson JR
    Commun Biol; 2019; 2():160. PubMed ID: 31069269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Juvenile skeletogenesis in anciently diverged sea urchin clades.
    Gao F; Thompson JR; Petsios E; Erkenbrack E; Moats RA; Bottjer DJ; Davidson EH
    Dev Biol; 2015 Apr; 400(1):148-58. PubMed ID: 25641694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Echinoderm development and evolution in the post-genomic era.
    Cary GA; Hinman VF
    Dev Biol; 2017 Jul; 427(2):203-211. PubMed ID: 28185788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos.
    McCauley BS; Weideman EP; Hinman VF
    Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins.
    Rafiq K; Shashikant T; McManus CJ; Ettensohn CA
    Development; 2014 Feb; 141(4):950-61. PubMed ID: 24496631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Evolution of Biomineralization through the Co-Option of Organic Scaffold Forming Networks.
    Ben-Tabou de-Leon S
    Cells; 2022 Feb; 11(4):. PubMed ID: 35203246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible cooption of a VEGF-driven tubulogenesis program for biomineralization in echinoderms.
    Morgulis M; Gildor T; Roopin M; Sher N; Malik A; Lalzar M; Dines M; Ben-Tabou de-Leon S; Khalaily L; Ben-Tabou de-Leon S
    Proc Natl Acad Sci U S A; 2019 Jun; 116(25):12353-12362. PubMed ID: 31152134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.