These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 29154829)
1. A role for Candida albicans superoxide dismutase enzymes in glucose signaling. Broxton CN; He B; Bruno VM; Culotta VC Biochem Biophys Res Commun; 2018 Jan; 495(1):814-820. PubMed ID: 29154829 [TBL] [Abstract][Full Text] [Related]
2. An Adaptation to Low Copper in Candida albicans Involving SOD Enzymes and the Alternative Oxidase. Broxton CN; Culotta VC PLoS One; 2016; 11(12):e0168400. PubMed ID: 28033429 [TBL] [Abstract][Full Text] [Related]
3. Candida albicans adapts to host copper during infection by swapping metal cofactors for superoxide dismutase. Li CX; Gleason JE; Zhang SX; Bruno VM; Cormack BP; Culotta VC Proc Natl Acad Sci U S A; 2015 Sep; 112(38):E5336-42. PubMed ID: 26351691 [TBL] [Abstract][Full Text] [Related]
4. Exploiting the vulnerable active site of a copper-only superoxide dismutase to disrupt fungal pathogenesis. Robinett NG; Culbertson EM; Peterson RL; Sanchez H; Andes DR; Nett JE; Culotta VC J Biol Chem; 2019 Feb; 294(8):2700-2713. PubMed ID: 30593499 [TBL] [Abstract][Full Text] [Related]
5. Copper-only superoxide dismutase enzymes and iron starvation stress in Schatzman SS; Peterson RL; Teka M; He B; Cabelli DE; Cormack BP; Culotta VC J Biol Chem; 2020 Jan; 295(2):570-583. PubMed ID: 31806705 [TBL] [Abstract][Full Text] [Related]
6. Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans. Gleason JE; Li CX; Odeh HM; Culotta VC J Biol Inorg Chem; 2014 Jun; 19(4-5):595-603. PubMed ID: 24043471 [TBL] [Abstract][Full Text] [Related]
7. Candida albicans expresses an unusual cytoplasmic manganese-containing superoxide dismutase (SOD3 gene product) upon the entry and during the stationary phase. Lamarre C; LeMay JD; Deslauriers N; Bourbonnais Y J Biol Chem; 2001 Nov; 276(47):43784-91. PubMed ID: 11562375 [TBL] [Abstract][Full Text] [Related]
8. The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases. Peterson RL; Galaleldeen A; Villarreal J; Taylor AB; Cabelli DE; Hart PJ; Culotta VC J Biol Chem; 2016 Sep; 291(40):20911-20923. PubMed ID: 27535222 [TBL] [Abstract][Full Text] [Related]
9. Cloning and functional characterization of the copper/zinc superoxide dismutase gene from the heavy-metal-tolerant yeast Cryptococcus liquefaciens strain N6. Kanamasa S; Sumi K; Yamuki N; Kumasaka T; Miura T; Abe F; Kajiwara S Mol Genet Genomics; 2007 Apr; 277(4):403-12. PubMed ID: 17160414 [TBL] [Abstract][Full Text] [Related]
10. Cu/Zn Superoxide Dismutase (Sod1) regulates the canonical Wnt signaling pathway. Chandrasekharan B; Montllor-Albalate C; Colin AE; Andersen JL; Jang YC; Reddi AR Biochem Biophys Res Commun; 2021 Jan; 534():720-726. PubMed ID: 33218686 [TBL] [Abstract][Full Text] [Related]
11. SOD1 integrates signals from oxygen and glucose to repress respiration. Reddi AR; Culotta VC Cell; 2013 Jan; 152(1-2):224-35. PubMed ID: 23332757 [TBL] [Abstract][Full Text] [Related]
12. Expanded role of the Cu-sensing transcription factor Mac1p in Candida albicans. Culbertson EM; Bruno VM; Cormack BP; Culotta VC Mol Microbiol; 2020 Dec; 114(6):1006-1018. PubMed ID: 32808698 [TBL] [Abstract][Full Text] [Related]
13. Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Hwang CS; Rhie GE; Oh JH; Huh WK; Yim HS; Kang SO Microbiology (Reading); 2002 Nov; 148(Pt 11):3705-3713. PubMed ID: 12427960 [TBL] [Abstract][Full Text] [Related]
14. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Martchenko M; Alarco AM; Harcus D; Whiteway M Mol Biol Cell; 2004 Feb; 15(2):456-67. PubMed ID: 14617819 [TBL] [Abstract][Full Text] [Related]
15. Roles of Candida albicans Mig1 and Mig2 in glucose repression, pathogenicity traits, and SNF1 essentiality. Lagree K; Woolford CA; Huang MY; May G; McManus CJ; Solis NV; Filler SG; Mitchell AP PLoS Genet; 2020 Jan; 16(1):e1008582. PubMed ID: 31961865 [TBL] [Abstract][Full Text] [Related]
16. Ceruloplasmin as a source of Cu for a fungal pathogen. Besold AN; Shanbhag V; Petris MJ; Culotta VC J Inorg Biochem; 2021 Jun; 219():111424. PubMed ID: 33765639 [TBL] [Abstract][Full Text] [Related]
17. Cu/Zn superoxide dismutase and the proton ATPase Pma1p of Saccharomyces cerevisiae. Baron JA; Chen JS; Culotta VC Biochem Biophys Res Commun; 2015 Jul; 462(3):251-6. PubMed ID: 25956063 [TBL] [Abstract][Full Text] [Related]
18. Candida albicans SOD5 represents the prototype of an unprecedented class of Cu-only superoxide dismutases required for pathogen defense. Gleason JE; Galaleldeen A; Peterson RL; Taylor AB; Holloway SP; Waninger-Saroni J; Cormack BP; Cabelli DE; Hart PJ; Culotta VC Proc Natl Acad Sci U S A; 2014 Apr; 111(16):5866-71. PubMed ID: 24711423 [TBL] [Abstract][Full Text] [Related]
19. Regulation of superoxide dismutase synthesis in Candida albicans. Gunasekaran U; Yang R; Gunasekaran M Mycopathologia; 1998; 141(2):59-63. PubMed ID: 9750335 [TBL] [Abstract][Full Text] [Related]
20. Copper- and zinc-containing superoxide dismutase and its gene from Candida albicans. Hwang CS; Rhie G; Kim ST; Kim YR; Huh WK; Baek YU; Kang SO Biochim Biophys Acta; 1999 Apr; 1427(2):245-55. PubMed ID: 10216241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]