These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29154908)

  • 41. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design.
    Green AL; Maypa AP; Almany GR; Rhodes KL; Weeks R; Abesamis RA; Gleason MG; Mumby PJ; White AT
    Biol Rev Camb Philos Soc; 2015 Nov; 90(4):1215-47. PubMed ID: 25423947
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tropical larval and juvenile fish critical swimming speed (U-crit) and morphology data.
    Fisher R; Leis JM; Hogan JD; Bellwood DR; Wilson SK; Job SD
    Sci Data; 2022 Feb; 9(1):45. PubMed ID: 35145119
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of larval swimming in the western North Pacific subtropical gyre on the recruitment success of the Japanese eel.
    Chang YK; Miller MJ; Tsukamoto K; Miyazawa Y
    PLoS One; 2018; 13(12):e0208704. PubMed ID: 30571715
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Physical and biological roles of mesoscale eddies in Japanese eel larvae dispersal in the western North Pacific Ocean.
    Chang YK; Miyazawa Y; Béguer-Pon M; Han YS; Ohashi K; Sheng J
    Sci Rep; 2018 Mar; 8(1):5013. PubMed ID: 29567996
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessing larval connectivity for marine spatial planning in the Adriatic.
    Bray L; Kassis D; Hall-Spencer JM
    Mar Environ Res; 2017 Apr; 125():73-81. PubMed ID: 28187325
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetic population structure of the endemic fourline wrasse (Larabicus quadrilineatus) suggests limited larval dispersal distances in the Red Sea.
    Froukh T; Kochzius M
    Mol Ecol; 2007 Apr; 16(7):1359-67. PubMed ID: 17391261
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evolutionarily Stable Strategies for Fecundity and Swimming Speed of Fish.
    Plank MJ; Pitchford JW; James A
    Bull Math Biol; 2016 Feb; 78(2):280-92. PubMed ID: 26817756
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomechanics of larval morphology affect swimming: insights from the sand dollars Dendraster excentricus.
    Chan KY
    Integr Comp Biol; 2012 Oct; 52(4):458-69. PubMed ID: 22753391
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Does fish larval dispersal differ between high and low latitudes?
    Leis JM; Caselle JE; Bradbury IR; Kristiansen T; Llopiz JK; Miller MJ; O'Connor MI; Paris CB; Shanks AL; Sogard SM; Swearer SE; Treml EA; Vetter RD; Warner RR
    Proc Biol Sci; 2013 May; 280(1759):20130327. PubMed ID: 23516247
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Departures from isotropy: the kinematics of a larval snail in response to food.
    DiBenedetto MH; Meyer-Kaiser KS; Torjman B; Wheeler JD; Mullineaux LS
    J Exp Biol; 2021 Jan; 224(Pt 2):. PubMed ID: 33257438
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Swimming speed of larval snail does not correlate with size and ciliary beat frequency.
    Chan KY; Jiang H; Padilla DK
    PLoS One; 2013; 8(12):e82764. PubMed ID: 24367554
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of ocean-acidification-induced morphological changes on larval swimming and feeding.
    Chan KY; Grünbaum D; O'Donnell MJ
    J Exp Biol; 2011 Nov; 214(Pt 22):3857-67. PubMed ID: 22031751
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Larval Dispersal Modeling Suggests Limited Ecological Connectivity Between Fjords on the West Antarctic Peninsula.
    Ziegler AF; Hahn-Woernle L; Powell B; Smith CR
    Integr Comp Biol; 2020 Dec; 60(6):1369-1385. PubMed ID: 32617573
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pre-settlement behavior in larval bryozoans: the roles of larval age and size.
    Burgess SC; Hart SP; Marshall DJ
    Biol Bull; 2009 Jun; 216(3):344-54. PubMed ID: 19556599
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomechanics of swimming in developing larval fish.
    Voesenek CJ; Muijres FT; van Leeuwen JL
    J Exp Biol; 2018 Jan; 221(Pt 1):. PubMed ID: 29326114
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inferring processes from spatial patterns: the role of directional and non-directional forces in shaping fish larvae distribution in a freshwater lake system.
    Bertolo A; Blanchet FG; Magnan P; Brodeur P; Mingelbier M; Legendre P
    PLoS One; 2012; 7(11):e50239. PubMed ID: 23185585
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Climate change and larval transport in the ocean: fractional effects from physical and physiological factors.
    Kendall MS; Poti M; Karnauskas KB
    Glob Chang Biol; 2016 Apr; 22(4):1532-47. PubMed ID: 26554877
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Morphology-flow interactions lead to stage-selective vertical transport of larval sand dollars in shear flow.
    Clay TW; Grünbaum D
    J Exp Biol; 2010 Apr; 213(Pt 8):1281-92. PubMed ID: 20348340
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ontogeny of critical and prolonged swimming performance for the larvae of six Australian freshwater fish species.
    Kopf SM; Humphries P; Watts RJ
    J Fish Biol; 2014 Jun; 84(6):1820-41. PubMed ID: 24814314
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Numerical study of hydrodynamic effects on Manila clam population distribution and transport in the Southwest Laizhou Bay, China.
    Zhong Y; Zhang J; Song D; Zhao Y; Liu Y; Wu W; Qiao L
    Sci Total Environ; 2023 Mar; 865():161214. PubMed ID: 36584946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.