These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29155060)

  • 1. Controlling cell-free metabolism through physiochemical perturbations.
    Karim AS; Heggestad JT; Crowe SA; Jewett MC
    Metab Eng; 2018 Jan; 45():86-94. PubMed ID: 29155060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery.
    Karim AS; Jewett MC
    Metab Eng; 2016 Jul; 36():116-126. PubMed ID: 26996382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-Free Synthetic Biology for Pathway Prototyping.
    Karim AS; Jewett MC
    Methods Enzymol; 2018; 608():31-57. PubMed ID: 30173768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-Free Mixing of Escherichia coli Crude Extracts to Prototype and Rationally Engineer High-Titer Mevalonate Synthesis.
    Dudley QM; Anderson KC; Jewett MC
    ACS Synth Biol; 2016 Dec; 5(12):1578-1588. PubMed ID: 27476989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-free biosynthesis of limonene using enzyme-enriched
    Dudley QM; Nash CJ; Jewett MC
    Synth Biol (Oxf); 2019; 4(1):ysz003. PubMed ID: 30873438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro prototyping of limonene biosynthesis using cell-free protein synthesis.
    Dudley QM; Karim AS; Nash CJ; Jewett MC
    Metab Eng; 2020 Sep; 61():251-260. PubMed ID: 32464283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted Growth Medium Dropouts Promote Aromatic Compound Synthesis in Crude
    Mohr B; Giannone RJ; Hettich RL; Doktycz MJ
    ACS Synth Biol; 2020 Nov; 9(11):2986-2997. PubMed ID: 33044063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design.
    Karim AS; Dudley QM; Juminaga A; Yuan Y; Crowe SA; Heggestad JT; Garg S; Abdalla T; Grubbe WS; Rasor BJ; Coar DN; Torculas M; Krein M; Liew FE; Quattlebaum A; Jensen RO; Stuart JA; Simpson SD; Köpke M; Jewett MC
    Nat Chem Biol; 2020 Aug; 16(8):912-919. PubMed ID: 32541965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-Free Protein Synthesis for High-Throughput Biosynthetic Pathway Prototyping.
    Rasor BJ; Vögeli B; Jewett MC; Karim AS
    Methods Mol Biol; 2022; 2433():199-215. PubMed ID: 34985746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol.
    Kay JE; Jewett MC
    Metab Eng; 2015 Nov; 32():133-142. PubMed ID: 26428449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of Energy Metabolism through Growth Media Reformulation Enables a 24-Hour Workflow for Cell-Free Expression.
    Levine MZ; So B; Mullin AC; Fanter R; Dillard K; Watts KR; La Frano MR; Oza JP
    ACS Synth Biol; 2020 Oct; 9(10):2765-2774. PubMed ID: 32835484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishing a versatile toolkit of flux enhanced strains and cell extracts for pathway prototyping.
    Yi X; Rasor BJ; Boadi N; Louie K; Northen TR; Karim AS; Jewett MC; Alper HS
    Metab Eng; 2023 Nov; 80():241-253. PubMed ID: 37890611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated in vivo/in vitro framework to enhance cell-free biosynthesis with metabolically rewired yeast extracts.
    Rasor BJ; Yi X; Brown H; Alper HS; Jewett MC
    Nat Commun; 2021 Aug; 12(1):5139. PubMed ID: 34446711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leucine zipper-mediated targeting of multi-enzyme cascade reactions to inclusion bodies in Escherichia coli for enhanced production of 1-butanol.
    Han GH; Seong W; Fu Y; Yoon PK; Kim SK; Yeom SJ; Lee DH; Lee SG
    Metab Eng; 2017 Mar; 40():41-49. PubMed ID: 28038953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-free styrene biosynthesis at high titers.
    Grubbe WS; Rasor BJ; Krüger A; Jewett MC; Karim AS
    Metab Eng; 2020 Sep; 61():89-95. PubMed ID: 32502620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing and Improving Reaction Times for
    Burrington LR; Watts KR; Oza JP
    ACS Synth Biol; 2021 Aug; 10(8):1821-1829. PubMed ID: 34269580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic capabilities of Escherichia coli: I. synthesis of biosynthetic precursors and cofactors.
    Varma A; Palsson BO
    J Theor Biol; 1993 Dec; 165(4):477-502. PubMed ID: 21322280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid Chromatography Coupled to Refractive Index or Mass Spectrometric Detection for Metabolite Profiling in Lysate-based Cell-free Systems.
    Dinglasan JLN; Reeves DT; Hettich RL; Doktycz MJ
    J Vis Exp; 2021 Sep; (175):. PubMed ID: 34633375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of CoA-dependent 1-butanol synthetic pathway functions under aerobic conditions in Escherichia coli.
    Kataoka N; Vangnai AS; Pongtharangkul T; Tajima T; Yakushi T; Matsushita K; Kato J
    J Biotechnol; 2015 Jun; 204():25-32. PubMed ID: 25865277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid prototyping enzyme homologs to improve titer of nicotinamide mononucleotide using a strategy combining cell-free protein synthesis with split GFP.
    Yuan Q; Wu M; Liao Y; Liang S; Lu Y; Lin Y
    Biotechnol Bioeng; 2023 Apr; 120(4):1133-1146. PubMed ID: 36585353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.