BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 29155411)

  • 1. Porosity effect of 3D-printed polycaprolactone membranes on calvarial defect model for guided bone regeneration.
    Shim JH; Jeong JH; Won JY; Bae JH; Ahn G; Jeon H; Yun WS; Bae EB; Choi JW; Lee SH; Jeong CM; Chung HY; Huh JB
    Biomed Mater; 2017 Dec; 13(1):015014. PubMed ID: 29155411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of 3D printed PCL/PLGA/β-TCP versus collagen membranes for guided bone regeneration in a beagle implant model.
    Won JY; Park CY; Bae JH; Ahn G; Kim C; Lim DH; Cho DW; Yun WS; Shim JH; Huh JB
    Biomed Mater; 2016 Oct; 11(5):055013. PubMed ID: 27716630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of 3D-Printed Polycaprolactone/β-Tricalcium Phosphate Membranes on Guided Bone Regeneration.
    Shim JH; Won JY; Park JH; Bae JH; Ahn G; Kim CH; Lim DH; Cho DW; Yun WS; Bae EB; Jeong CM; Huh JB
    Int J Mol Sci; 2017 Apr; 18(5):. PubMed ID: 28441338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of oxygen plasma etching on pore size-controlled 3D polycaprolactone scaffolds for enhancing the early new bone formation in rabbit calvaria.
    Kook MS; Roh HS; Kim BH
    Dent Mater J; 2018 Jul; 37(4):599-610. PubMed ID: 29731489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printed alendronate-releasing poly(caprolactone) porous scaffolds enhance osteogenic differentiation and bone formation in rat tibial defects.
    Kim SE; Yun YP; Shim KS; Kim HJ; Park K; Song HR
    Biomed Mater; 2016 Sep; 11(5):055005. PubMed ID: 27680282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells.
    Lin YH; Chuang TY; Chiang WH; Chen IP; Wang K; Shie MY; Chen YW
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109887. PubMed ID: 31500024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of rhBMP-2 Loaded PCL/
    Bae EB; Park KH; Shim JH; Chung HY; Choi JW; Lee JJ; Kim CH; Jeon HJ; Kang SS; Huh JB
    Biomed Res Int; 2018; 2018():2876135. PubMed ID: 29682530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of new bone formation in critical-sized rat calvarial defect using 3D printed polycaprolactone/tragacanth gum-bioactive glass composite scaffolds.
    Janmohammadi M; Doostmohammadi N; Bahraminasab M; Nourbakhsh MS; Arab S; Asgharzade S; Ghanbari A; Satari A
    Int J Biol Macromol; 2024 Jun; 270(Pt 1):132361. PubMed ID: 38750857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heparan sulfate loaded polycaprolactone-hydroxyapatite scaffolds with 3D printing for bone defect repair.
    Liu Y; Wang R; Chen S; Xu Z; Wang Q; Yuan P; Zhou Y; Zhang Y; Chen J
    Int J Biol Macromol; 2020 Apr; 148():153-162. PubMed ID: 31935409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three dimensionally printed pearl powder/poly-caprolactone composite scaffolds for bone regeneration.
    Zhang X; Du X; Li D; Ao R; Yu B; Yu B
    J Biomater Sci Polym Ed; 2018 Oct; 29(14):1686-1700. PubMed ID: 29768120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by ε-polycarbonate coating.
    Kim BS; Yang SS; Park H; Lee SH; Cho YS; Lee J
    J Biomater Sci Polym Ed; 2017 Sep; 28(13):1256-1270. PubMed ID: 28598722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Printed Polylactic Acid Scaffolds Promote Bone-like Matrix Deposition in Vitro.
    Fairag R; Rosenzweig DH; Ramirez-Garcialuna JL; Weber MH; Haglund L
    ACS Appl Mater Interfaces; 2019 May; 11(17):15306-15315. PubMed ID: 30973708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration.
    Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printed Poly(𝜀-caprolactone)/Hydroxyapatite Scaffolds for Bone Tissue Engineering: A Comparative Study on a Composite Preparation by Melt Blending or Solvent Casting Techniques and the Influence of Bioceramic Content on Scaffold Properties.
    Biscaia S; Branquinho MV; Alvites RD; Fonseca R; Sousa AC; Pedrosa SS; Caseiro AR; Guedes F; Patrício T; Viana T; Mateus A; Maurício AC; Alves N
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.
    Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-printed bi-layered polymer/hydrogel construct for interfacial tissue regeneration in a canine model.
    Jamalpour MR; Yadegari A; Vahdatinia F; Amirabad LM; Jamshidi S; Shojaei S; Shokri A; Moeinifard E; Omidi M; Tayebi L
    Dent Mater; 2022 Aug; 38(8):1316-1329. PubMed ID: 35738951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.