These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29155999)

  • 1. High Incomplete Skeletal Muscle Fatty Acid Oxidation Explains Low Muscle Insulin Sensitivity in Poorly Controlled T2D.
    Gavin TP; Ernst JM; Kwak HB; Caudill SE; Reed MA; Garner RT; Nie Y; Weiss JA; Pories WJ; Dar M; Lin CT; Hubal MJ; Neufer PD; Kuang S; Dohm GL
    J Clin Endocrinol Metab; 2018 Mar; 103(3):882-889. PubMed ID: 29155999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulin sensitivity is related to glycemic control in type 2 diabetes and diabetes remission after Roux-en Y gastric bypass.
    Gavin TP; Ernst JM; Caudill SE; Dohm GL; Pories WJ; Dar M; Reed MA
    Surgery; 2014 Jun; 155(6):1036-43. PubMed ID: 24856123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endurance training remodels skeletal muscle phospholipid composition and increases intrinsic mitochondrial respiration in men with Type 2 diabetes.
    Pino MF; Stephens NA; Eroshkin AM; Yi F; Hodges A; Cornnell HH; Pratley RE; Smith SR; Wang M; Han X; Coen PM; Goodpaster BH; Sparks LM
    Physiol Genomics; 2019 Nov; 51(11):586-595. PubMed ID: 31588872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acylcarnitines as markers of exercise-associated fuel partitioning, xenometabolism, and potential signals to muscle afferent neurons.
    Zhang J; Light AR; Hoppel CL; Campbell C; Chandler CJ; Burnett DJ; Souza EC; Casazza GA; Hughen RW; Keim NL; Newman JW; Hunter GR; Fernandez JR; Garvey WT; Harper ME; Fiehn O; Adams SH
    Exp Physiol; 2017 Jan; 102(1):48-69. PubMed ID: 27730694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nine months of combined training improves ex vivo skeletal muscle metabolism in individuals with type 2 diabetes.
    Sparks LM; Johannsen NM; Church TS; Earnest CP; Moonen-Kornips E; Moro C; Hesselink MK; Smith SR; Schrauwen P
    J Clin Endocrinol Metab; 2013 Apr; 98(4):1694-702. PubMed ID: 23463651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insulin resistance in type 2 diabetes youth relates to serum free fatty acids and muscle mitochondrial dysfunction.
    Cree-Green M; Gupta A; Coe GV; Baumgartner AD; Pyle L; Reusch JE; Brown MS; Newcomer BR; Nadeau KJ
    J Diabetes Complications; 2017 Jan; 31(1):141-148. PubMed ID: 27839922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in skeletal muscle mitochondria in response to the development of type 2 diabetes or prevention by daily wheel running in hyperphagic OLETF rats.
    Rector RS; Uptergrove GM; Borengasser SJ; Mikus CR; Morris EM; Naples SP; Laye MJ; Laughlin MH; Booth FW; Ibdah JA; Thyfault JP
    Am J Physiol Endocrinol Metab; 2010 Jun; 298(6):E1179-87. PubMed ID: 20233940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of Long-Chain Acyl-CoA Synthetase 5 Increases Fatty Acid Oxidation and Free Radical Formation While Attenuating Insulin Signaling in Primary Human Skeletal Myotubes.
    Kwak HB; Woodlief TL; Green TD; Cox JH; Hickner RC; Neufer PD; Cortright RN
    Int J Environ Res Public Health; 2019 Mar; 16(7):. PubMed ID: 30935113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of muraglitazar on adiponectin signalling, mitochondrial function and fat oxidation genes in human skeletal muscle in vivo.
    Coletta DK; Fernandez M; Cersosimo E; Gastaldelli A; Musi N; DeFronzo RA
    Diabet Med; 2015 May; 32(5):657-64. PubMed ID: 25484175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein acetylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure.
    Tsuda M; Fukushima A; Matsumoto J; Takada S; Kakutani N; Nambu H; Yamanashi K; Furihata T; Yokota T; Okita K; Kinugawa S; Anzai T
    J Cachexia Sarcopenia Muscle; 2018 Oct; 9(5):844-859. PubMed ID: 30168279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes: evidence for an intrinsic oxidative enzyme defect.
    Ortenblad N; Mogensen M; Petersen I; Højlund K; Levin K; Sahlin K; Beck-Nielsen H; Gaster M
    Biochim Biophys Acta; 2005 Jun; 1741(1-2):206-14. PubMed ID: 15894466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle.
    Lefort N; Glancy B; Bowen B; Willis WT; Bailowitz Z; De Filippis EA; Brophy C; Meyer C; Højlund K; Yi Z; Mandarino LJ
    Diabetes; 2010 Oct; 59(10):2444-52. PubMed ID: 20682693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opposite effects of pioglitazone and rosiglitazone on mitochondrial respiration in skeletal muscle of patients with type 2 diabetes.
    Rabøl R; Boushel R; Almdal T; Hansen CN; Ploug T; Haugaard SB; Prats C; Madsbad S; Dela F
    Diabetes Obes Metab; 2010 Sep; 12(9):806-14. PubMed ID: 20649633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased mitochondrial substrate sensitivity in skeletal muscle of patients with type 2 diabetes.
    Larsen S; Stride N; Hey-Mogensen M; Hansen CN; Andersen JL; Madsbad S; Worm D; Helge JW; Dela F
    Diabetologia; 2011 Jun; 54(6):1427-36. PubMed ID: 21424396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle mitochondria in insulin resistance: differences in intermyofibrillar versus subsarcolemmal subpopulations and relationship to metabolic flexibility.
    Chomentowski P; Coen PM; Radiková Z; Goodpaster BH; Toledo FG
    J Clin Endocrinol Metab; 2011 Feb; 96(2):494-503. PubMed ID: 21106709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive interrogation of human skeletal muscle reveals a dissociation between insulin resistance and mitochondrial capacity.
    Whytock KL; Pino MF; Sun Y; Yu G; De Carvalho FG; Yeo RX; Vega RB; Parmar G; Divoux A; Kapoor N; Yi F; Cornnell H; Patten DA; Harper ME; Gardell SJ; Smith SR; Walsh MJ; Sparks LM
    Am J Physiol Endocrinol Metab; 2023 Oct; 325(4):E291-E302. PubMed ID: 37584609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial Function in an In Vitro Model of Skeletal Muscle of Patients With Protracted Critical Illness and Intensive Care Unit-Acquired Weakness.
    Jiroutková K; Krajčová A; Žiak J; Fric M; Gojda J; Džupa V; Kalous M; Tůmová J; Trnka J; Duška F
    JPEN J Parenter Enteral Nutr; 2017 Sep; 41(7):1213-1221. PubMed ID: 27358332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z
    J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved glycaemic control decreases inner mitochondrial membrane leak in type 2 diabetes.
    Rabøl R; Højberg PM; Almdal T; Boushel R; Haugaard SB; Madsbad S; Dela F
    Diabetes Obes Metab; 2009 Apr; 11(4):355-60. PubMed ID: 19267714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes.
    Jacobs RA; Lundby C
    J Appl Physiol (1985); 2013 Feb; 114(3):344-50. PubMed ID: 23221957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.