These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 29156127)
1. Gas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane. Yao B; Mandrà S; Curry JO; Shaikhutdinov S; Freund HJ; Schrier J ACS Appl Mater Interfaces; 2017 Dec; 9(49):43061-43071. PubMed ID: 29156127 [TBL] [Abstract][Full Text] [Related]
2. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation. Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710 [TBL] [Abstract][Full Text] [Related]
3. Gas Separation Silica Membranes Prepared by Chemical Vapor Deposition of Methyl-Substituted Silanes. Kato H; Lundin SB; Ahn SJ; Takagaki A; Kikuchi R; Oyama ST Membranes (Basel); 2019 Nov; 9(11):. PubMed ID: 31684187 [TBL] [Abstract][Full Text] [Related]
4. Stable, Temperature-Dependent Gas Mixture Permeation and Separation through Suspended Nanoporous Single-Layer Graphene Membranes. Yuan Z; Benck JD; Eatmon Y; Blankschtein D; Strano MS Nano Lett; 2018 Aug; 18(8):5057-5069. PubMed ID: 30044919 [TBL] [Abstract][Full Text] [Related]
5. A uniformly oriented MFI membrane for improved CO₂ separation. Zhou M; Korelskiy D; Ye P; Grahn M; Hedlund J Angew Chem Int Ed Engl; 2014 Mar; 53(13):3492-5. PubMed ID: 24590761 [TBL] [Abstract][Full Text] [Related]
6. Two-Dimensional Covalent Triazine Framework Membrane for Helium Separation and Hydrogen Purification. Wang Y; Li J; Yang Q; Zhong C ACS Appl Mater Interfaces; 2016 Apr; 8(13):8694-701. PubMed ID: 26964618 [TBL] [Abstract][Full Text] [Related]
7. Continuous Porous Aromatic Framework Membranes with Modifiable Sites for Optimized Gas Separation. Ma Y; Cui F; Rong H; Song J; Jing X; Tian Y; Zhu G Angew Chem Int Ed Engl; 2022 Jan; 61(1):e202113682. PubMed ID: 34687128 [TBL] [Abstract][Full Text] [Related]
8. Generating Sub-nanometer Pores in Single-Layer MoS Yin K; Huang S; Chen X; Wang X; Kong J; Chen Y; Xue J ACS Appl Mater Interfaces; 2018 Aug; 10(34):28909-28917. PubMed ID: 30062872 [TBL] [Abstract][Full Text] [Related]
9. Exploration of nanoporous graphene membranes for the separation of N2 from CO2: a multi-scale computational study. Wang Y; Yang Q; Li J; Yang J; Zhong C Phys Chem Chem Phys; 2016 Mar; 18(12):8352-8. PubMed ID: 26701145 [TBL] [Abstract][Full Text] [Related]
10. Permeation of binary gas mixtures in ultramicroporous membranes. da Costa JC; Lu GQ; Rudolph V J Nanosci Nanotechnol; 2004 Mar; 4(3):265-9. PubMed ID: 15233087 [TBL] [Abstract][Full Text] [Related]
11. Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene. Villalobos LF; Babu DJ; Hsu KJ; Van Goethem C; Agrawal KV Acc Mater Res; 2022 Oct; 3(10):1073-1087. PubMed ID: 36338295 [TBL] [Abstract][Full Text] [Related]
12. ZIF-62 glass foam self-supported membranes to address CH Yang Z; Belmabkhout Y; McHugh LN; Ao D; Sun Y; Li S; Qiao Z; Bennett TD; Guiver MD; Zhong C Nat Mater; 2023 Jul; 22(7):888-894. PubMed ID: 37169976 [TBL] [Abstract][Full Text] [Related]
13. Inhibition effect of a non-permeating component on gas permeability of nanoporous graphene membranes. Wen B; Sun C; Bai B Phys Chem Chem Phys; 2015 Sep; 17(36):23619-26. PubMed ID: 26299564 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and Evaluation of Trimethylmethoxysilane (TMMOS)-Derived Membranes for Gas Separation. Mise Y; Ahn SJ; Takagaki A; Kikuchi R; Oyama ST Membranes (Basel); 2019 Sep; 9(10):. PubMed ID: 31547032 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of Crystalline Microporous Membrane from 2D MOF Nanosheets for Gas Separation. Jiang S; Shi X; Sun F; Zhu G Chem Asian J; 2020 Aug; 15(15):2371-2378. PubMed ID: 32249501 [TBL] [Abstract][Full Text] [Related]
16. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations. Cowan MG; Gin DL; Noble RD Acc Chem Res; 2016 Apr; 49(4):724-32. PubMed ID: 27046045 [TBL] [Abstract][Full Text] [Related]
17. Expanded Porphyrins as Two-Dimensional Porous Membranes for CO2 Separation. Tian Z; Dai S; Jiang DE ACS Appl Mater Interfaces; 2015 Jun; 7(23):13073-9. PubMed ID: 25988306 [TBL] [Abstract][Full Text] [Related]
18. Polymeric membrane materials: new aspects of empirical approaches to prediction of gas permeability parameters in relation to permanent gases, linear lower hydrocarbons and some toxic gases. Malykh OV; Golub AY; Teplyakov VV Adv Colloid Interface Sci; 2011 May; 164(1-2):89-99. PubMed ID: 21094931 [TBL] [Abstract][Full Text] [Related]
19. Size and Shape Exclusion in 2D Silicon Dioxide Membranes. Dementyev P; Khayya N; Zanders D; Ennen I; Devi A; Altman EI Small; 2023 Mar; 19(9):e2205602. PubMed ID: 36521931 [TBL] [Abstract][Full Text] [Related]
20. Molecular Permeation in Freestanding Bilayer Silica. Naberezhnyi D; Mai L; Doudin N; Ennen I; Hütten A; Altman EI; Devi A; Dementyev P Nano Lett; 2022 Feb; 22(3):1287-1293. PubMed ID: 35044780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]