BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

534 related articles for article (PubMed ID: 29156259)

  • 1. Biochar and nitrate reduce risk of methylmercury in soils under straw amendment.
    Zhang Y; Liu YR; Lei P; Wang YJ; Zhong H
    Sci Total Environ; 2018 Apr; 619-620():384-390. PubMed ID: 29156259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochar amendment reduced methylmercury accumulation in rice plants.
    Shu R; Wang Y; Zhong H
    J Hazard Mater; 2016 Aug; 313():1-8. PubMed ID: 27045620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of incorporating differently-treated rice straw on phytoavailability of methylmercury in soil.
    Shu R; Dang F; Zhong H
    Chemosphere; 2016 Feb; 145():457-63. PubMed ID: 26694796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochar amendment mitigates the health risks of dietary methylmercury exposure from rice consumption in mercury-contaminated areas.
    Wang Y; Sun Y; He T; Deng H; Wang Z; Wang J; Zheng X; Zhou L; Zhong H
    Environ Pollut; 2020 Dec; 267():115547. PubMed ID: 33254602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of sulfur-rich biochar amendment on microbial methylation of mercury in rhizosphere paddy soil and methylmercury accumulation in rice.
    Hu H; Xi B; Tan W
    Environ Pollut; 2021 Oct; 286():117290. PubMed ID: 33984776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of methylmercury accumulation in wheat and rice grown in straw-amended paddy soil.
    Wang Y; Chen Z; Wu Y; Zhong H
    Sci Total Environ; 2019 Dec; 697():134143. PubMed ID: 31476499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochar-impacted sulfur cycling affects methylmercury phytoavailability in soils under different redox conditions.
    Wang Y; Zhang Y; Ok YS; Jiang T; Liu P; Shu R; Wang D; Cao X; Zhong H
    J Hazard Mater; 2021 Apr; 407():124397. PubMed ID: 33183839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury in rice (Oryza sativa L.) and rice-paddy soils under long-term fertilizer and organic amendment.
    Tang Z; Fan F; Wang X; Shi X; Deng S; Wang D
    Ecotoxicol Environ Saf; 2018 Apr; 150():116-122. PubMed ID: 29272715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of varying amounts of different biochars on mercury methylation in paddy soils and methylmercury accumulation in rice (Oryza sativa L.).
    Wang Y; Chen L; Chen Y; Xue Y; Liu G; Zheng X; Zhou L; Zhong H
    Sci Total Environ; 2023 May; 874():162459. PubMed ID: 36871735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased Methylmercury Accumulation in Rice after Straw Amendment.
    Tang W; Hintelmann H; Gu B; Feng X; Liu Y; Gao Y; Zhao J; Zhu H; Lei P; Zhong H
    Environ Sci Technol; 2019 Jun; 53(11):6144-6153. PubMed ID: 30983351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenium-amended biochar mitigates inorganic mercury and methylmercury accumulation in rice (Oryza sativa L.).
    Lv W; Zhan T; Abdelhafiz MA; Feng X; Meng B
    Environ Pollut; 2021 Dec; 291():118259. PubMed ID: 34600068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of sewage sludge biochar in methylmercury formation and accumulation in rice.
    Zhang J; Wu S; Xu Z; Wang M; Man YB; Christie P; Liang P; Shan S; Wong MH
    Chemosphere; 2019 Mar; 218():527-533. PubMed ID: 30500713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rice root exudates affect microbial methylmercury production in paddy soils.
    Zhao JY; Ye ZH; Zhong H
    Environ Pollut; 2018 Nov; 242(Pt B):1921-1929. PubMed ID: 30072222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands.
    Man Y; Wang B; Wang J; Slaný M; Yan H; Li P; El-Naggar A; Shaheen SM; Rinklebe J; Feng X
    Environ Int; 2021 Aug; 153():106527. PubMed ID: 33784588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system.
    Rajendran M; Shi L; Wu C; Li W; An W; Liu Z; Xue S
    Chemosphere; 2019 May; 222():314-322. PubMed ID: 30708165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitigation of mercury accumulation in rice using rice hull-derived biochar as soil amendment: A field investigation.
    Xing Y; Wang J; Shaheen SM; Feng X; Chen Z; Zhang H; Rinklebe J
    J Hazard Mater; 2020 Apr; 388():121747. PubMed ID: 32001101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporating rice residues into paddy soils affects methylmercury accumulation in rice.
    Zhu H; Zhong H; Wu J
    Chemosphere; 2016 Jun; 152():259-64. PubMed ID: 26974480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury and methylmercury in Hg-contaminated paddy soil and their uptake in rice as regulated by DOM from different agricultural sources.
    Yang N; Hu J; Yin D; He T; Tian X; Ran S; Zhou X
    Environ Sci Pollut Res Int; 2023 Jul; 30(31):77181-77192. PubMed ID: 37249779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of Chitosan-modified Biochar on Formation of Methylmercury in Paddy Soils and Its Accumulation in Rice].
    Yang XL; Wang MX; Xu GM; Wang DY
    Huan Jing Ke Xue; 2021 Mar; 42(3):1191-1196. PubMed ID: 33742916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of methylmercury accumulation in rice grains by chemical extraction methods.
    Zhu DW; Zhong H; Zeng QL; Yin Y
    Environ Pollut; 2015 Apr; 199():1-9. PubMed ID: 25616007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.