These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
452 related articles for article (PubMed ID: 29156291)
1. Engineering the next-generation tin containing β titanium alloys with high strength and low modulus for orthopedic applications. Bahl S; Das S; Suwas S; Chatterjee K J Mech Behav Biomed Mater; 2018 Feb; 78():124-133. PubMed ID: 29156291 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution. Dalmau A; Guiñón Pina V; Devesa F; Amigó V; Igual Muñoz A Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():55-62. PubMed ID: 25579896 [TBL] [Abstract][Full Text] [Related]
3. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys. Zhang DC; Yang S; Wei M; Mao YF; Tan CG; Lin JG J Mech Behav Biomed Mater; 2012 Sep; 13():156-65. PubMed ID: 22842657 [TBL] [Abstract][Full Text] [Related]
4. Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium-niobium alloy with low Young's modulus. Bai Y; Deng Y; Zheng Y; Li Y; Zhang R; Lv Y; Zhao Q; Wei S Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():565-576. PubMed ID: 26652409 [TBL] [Abstract][Full Text] [Related]
7. Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn. Verissimo NC; Geilich BM; Oliveira HG; Caram R; Webster TJ J Biomed Mater Res A; 2015 Dec; 103(12):3757-63. PubMed ID: 26033413 [TBL] [Abstract][Full Text] [Related]
8. Mechanical and electrochemical characterisation of new Ti-Mo-Nb-Zr alloys for biomedical applications. Nnamchi PS; Obayi CS; Todd I; Rainforth MW J Mech Behav Biomed Mater; 2016 Jul; 60():68-77. PubMed ID: 26773649 [TBL] [Abstract][Full Text] [Related]
9. Impact of scandium on mechanical properties, corrosion behavior, friction and wear performance, and cytotoxicity of a β-type Ti-24Nb-38Zr-2Mo alloy for orthopedic applications. Tong X; Sun Q; Zhang D; Wang K; Dai Y; Shi Z; Li Y; Dargusch M; Huang S; Ma J; Wen C; Lin J Acta Biomater; 2021 Oct; 134():791-803. PubMed ID: 34332105 [TBL] [Abstract][Full Text] [Related]
10. A more defective substrate leads to a less defective passive layer: Enhancing the mechanical strength, corrosion resistance and anti-inflammatory response of the low-modulus Ti-45Nb alloy by grain refinement. Hu N; Xie L; Liao Q; Gao A; Zheng Y; Pan H; Tong L; Yang D; Gao N; Starink MJ; Chu PK; Wang H Acta Biomater; 2021 May; 126():524-536. PubMed ID: 33684537 [TBL] [Abstract][Full Text] [Related]
11. Influence of Si addition on the microstructure and mechanical properties of Ti-35Nb alloy for applications in orthopedic implants. Tavares AM; Ramos WS; de Blas JC; Lopes ES; Caram R; Batista WW; Souza SA J Mech Behav Biomed Mater; 2015 Nov; 51():74-87. PubMed ID: 26218870 [TBL] [Abstract][Full Text] [Related]
12. Surface mechanical attrition treatment of low modulus Ti-Nb-Ta-O alloy for orthopedic applications. Acharya S; Panicker AG; Gopal V; Dabas SS; Manivasagam G; Suwas S; Chatterjee K Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110729. PubMed ID: 32204039 [TBL] [Abstract][Full Text] [Related]
13. In vitro evaluation of biocompatibility of Ti-Mo-Sn-Zr superelastic alloy. Nunome S; Kanetaka H; Kudo TA; Endoh K; Hosoda H; Igarashi K J Biomater Appl; 2015 Jul; 30(1):119-30. PubMed ID: 25659946 [TBL] [Abstract][Full Text] [Related]
14. Spinodal Zr-Nb alloys with ultrahigh elastic admissible strain and low magnetic susceptibility for orthopedic applications. Hua Z; Zhang D; Guo L; Lin J; Li Y; Wen C Acta Biomater; 2024 Aug; 184():444-460. PubMed ID: 38897338 [TBL] [Abstract][Full Text] [Related]
15. Newly developed Ti-Nb-Zr-Ta-Si-Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility. Kopova I; Stráský J; Harcuba P; Landa M; Janeček M; Bačákova L Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():230-238. PubMed ID: 26706526 [TBL] [Abstract][Full Text] [Related]
16. Mechanical, corrosion, nanotribological, and biocompatibility properties of equal channel angular pressed Ti-28Nb-35.4Zr alloys for biomedical applications. Munir K; Lin J; Wright PFA; Ozan S; Li Y; Wen C Acta Biomater; 2022 Sep; 149():387-398. PubMed ID: 35817341 [TBL] [Abstract][Full Text] [Related]
17. Nanocrystalline β-Ti alloy with high hardness, low Young's modulus and excellent in vitro biocompatibility for biomedical applications. Xie KY; Wang Y; Zhao Y; Chang L; Wang G; Chen Z; Cao Y; Liao X; Lavernia EJ; Valiev RZ; Sarrafpour B; Zoellner H; Ringer SP Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3530-6. PubMed ID: 23706243 [TBL] [Abstract][Full Text] [Related]
18. Preparation, structural, microstructural, mechanical, and cytotoxic characterization of Ti-15Nb alloy for biomedical applications. Kuroda PAB; da Silva LM; Sousa KDSJ; Donato TAG; Grandini CR Artif Organs; 2020 Aug; 44(8):811-817. PubMed ID: 31876963 [TBL] [Abstract][Full Text] [Related]
19. Role of aging induced α precipitation on the mechanical and tribocorrosive performance of a β Ti-Nb-Ta-O orthopedic alloy. Acharya S; Bahl S; Dabas SS; Hassan S; Gopal V; Panicker AG; Manivasagam G; Suwas S; Chatterjee K Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109755. PubMed ID: 31349485 [TBL] [Abstract][Full Text] [Related]
20. Effects of elastic intramedullary nails composed of low Young's modulus Ti-Nb-Sn alloy on healing of tibial osteotomies in rabbits. Kogure A; Mori Y; Tanaka H; Kamimura M; Masahashi N; Hanada S; Itoi E J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):700-707. PubMed ID: 29920923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]