These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. An Inducible and Vascular Smooth Muscle Cell-Specific Pink1 Knockout Induces Mitochondrial Energetic Dysfunction during Atherogenesis. Docherty CK; Bresciani J; Carswell A; Chanderseka A; Friel E; Stasi M; Mercer JR Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576157 [TBL] [Abstract][Full Text] [Related]
4. Arginase-II induces vascular smooth muscle cell senescence and apoptosis through p66Shc and p53 independently of its l-arginine ureahydrolase activity: implications for atherosclerotic plaque vulnerability. Xiong Y; Yu Y; Montani JP; Yang Z; Ming XF J Am Heart Assoc; 2013 Jul; 2(4):e000096. PubMed ID: 23832324 [TBL] [Abstract][Full Text] [Related]
5. PINK1/Parkin-mediated mitophagy promotes apelin-13-induced vascular smooth muscle cell proliferation by AMPKα and exacerbates atherosclerotic lesions. He L; Zhou Q; Huang Z; Xu J; Zhou H; Lv D; Lu L; Huang S; Tang M; Zhong J; Chen JX; Luo X; Li L; Chen L J Cell Physiol; 2019 Jun; 234(6):8668-8682. PubMed ID: 30456860 [TBL] [Abstract][Full Text] [Related]
6. Adenosine monophosphate-activated protein kinase-α2 deficiency promotes vascular smooth muscle cell migration via S-phase kinase-associated protein 2 upregulation and E-cadherin downregulation. Song P; Zhou Y; Coughlan KA; Dai X; Xu H; Viollet B; Zou MH Arterioscler Thromb Vasc Biol; 2013 Dec; 33(12):2800-9. PubMed ID: 24115035 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness. Yu EPK; Reinhold J; Yu H; Starks L; Uryga AK; Foote K; Finigan A; Figg N; Pung YF; Logan A; Murphy MP; Bennett M Arterioscler Thromb Vasc Biol; 2017 Dec; 37(12):2322-2332. PubMed ID: 28970293 [TBL] [Abstract][Full Text] [Related]
8. Cellular subtype expression and activation of CaMKII regulate the fate of atherosclerotic plaque. Maione AS; Cipolletta E; Sorriento D; Borriello F; Soprano M; Rusciano MR; D'Esposito V; Markabaoui AK; De Palma GD; Martino G; Maresca L; Nobile G; Campiglia P; Formisano P; Ciccarelli M; Marone G; Trimarco B; Iaccarino G; Illario M Atherosclerosis; 2017 Jan; 256():53-61. PubMed ID: 28011257 [TBL] [Abstract][Full Text] [Related]
9. Attenuated Superoxide Dismutase 2 Activity Induces Atherosclerotic Plaque Instability During Aging in Hyperlipidemic Mice. Vendrov AE; Stevenson MD; Alahari S; Pan H; Wickline SA; Madamanchi NR; Runge MS J Am Heart Assoc; 2017 Oct; 6(11):. PubMed ID: 29079564 [TBL] [Abstract][Full Text] [Related]
10. Chitinase 3 like 1 is a regulator of smooth muscle cell physiology and atherosclerotic lesion stability. Tsantilas P; Lao S; Wu Z; Eberhard A; Winski G; Vaerst M; Nanda V; Wang Y; Kojima Y; Ye J; Flores A; Jarr KU; Pelisek J; Eckstein HH; Matic L; Hedin U; Tsao PS; Paloschi V; Maegdefessel L; Leeper NJ Cardiovasc Res; 2021 Dec; 117(14):2767-2780. PubMed ID: 33471078 [TBL] [Abstract][Full Text] [Related]
11. Defective Base Excision Repair of Oxidative DNA Damage in Vascular Smooth Muscle Cells Promotes Atherosclerosis. Shah A; Gray K; Figg N; Finigan A; Starks L; Bennett M Circulation; 2018 Oct; 138(14):1446-1462. PubMed ID: 29643057 [TBL] [Abstract][Full Text] [Related]
12. Liraglutide, a GLP-1 receptor agonist, inhibits vascular smooth muscle cell proliferation by enhancing AMP-activated protein kinase and cell cycle regulation, and delays atherosclerosis in ApoE deficient mice. Jojima T; Uchida K; Akimoto K; Tomotsune T; Yanagi K; Iijima T; Suzuki K; Kasai K; Aso Y Atherosclerosis; 2017 Jun; 261():44-51. PubMed ID: 28445811 [TBL] [Abstract][Full Text] [Related]
13. PCSK9 expression in fibrous cap possesses a marker for rupture in advanced plaque. Zhang Y; Dai D; Geng S; Rong C; Zou R; Leng X; Xiang J; Liu J; Ding J Vasc Med; 2024 Oct; 29(5):483-495. PubMed ID: 38860436 [TBL] [Abstract][Full Text] [Related]
14. HIF-1 inhibition decreases systemic vascular remodelling diseases by promoting apoptosis through a hexokinase 2-dependent mechanism. Lambert CM; Roy M; Robitaille GA; Richard DE; Bonnet S Cardiovasc Res; 2010 Oct; 88(1):196-204. PubMed ID: 20498255 [TBL] [Abstract][Full Text] [Related]
15. Effects of DNA damage in smooth muscle cells in atherosclerosis. Gray K; Kumar S; Figg N; Harrison J; Baker L; Mercer J; Littlewood T; Bennett M Circ Res; 2015 Feb; 116(5):816-26. PubMed ID: 25524056 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Yu E; Calvert PA; Mercer JR; Harrison J; Baker L; Figg NL; Kumar S; Wang JC; Hurst LA; Obaid DR; Logan A; West NE; Clarke MC; Vidal-Puig A; Murphy MP; Bennett MR Circulation; 2013 Aug; 128(7):702-12. PubMed ID: 23841983 [TBL] [Abstract][Full Text] [Related]
17. Potential role of insulin receptor isoforms and IGF receptors in plaque instability of human and experimental atherosclerosis. Beneit N; Martín-Ventura JL; Rubio-Longás C; Escribano Ó; García-Gómez G; Fernández S; Sesti G; Hribal ML; Egido J; Gómez-Hernández A; Benito M Cardiovasc Diabetol; 2018 Feb; 17(1):31. PubMed ID: 29463262 [TBL] [Abstract][Full Text] [Related]
18. NLRP3 Inflammasome Activation Controls Vascular Smooth Muscle Cells Phenotypic Switch in Atherosclerosis. Burger F; Baptista D; Roth A; da Silva RF; Montecucco F; Mach F; Brandt KJ; Miteva K Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008765 [TBL] [Abstract][Full Text] [Related]
19. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Grootaert MOJ; Moulis M; Roth L; Martinet W; Vindis C; Bennett MR; De Meyer GRY Cardiovasc Res; 2018 Mar; 114(4):622-634. PubMed ID: 29360955 [TBL] [Abstract][Full Text] [Related]
20. Enhanced base excision repair capacity in carotid atherosclerosis may protect nuclear DNA but not mitochondrial DNA. Skarpengland T; Dahl TB; Skjelland M; Scheffler K; de Sousa MML; Gregersen I; Kuśnierczyk A; Sharma A; Slupphaug G; Eide L; Segers FM; Skagen KR; Dahl CP; Russell D; Folkersen L; Krohg-Sørensen K; Holm S; Bjørås M; Aukrust P; Halvorsen B Free Radic Biol Med; 2016 Aug; 97():386-397. PubMed ID: 27381496 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]