These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 29156423)

  • 1. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production.
    Mans R; Daran JG; Pronk JT
    Curr Opin Biotechnol; 2018 Apr; 50():47-56. PubMed ID: 29156423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties.
    Cakar ZP; Turanli-Yildiz B; Alkim C; Yilmaz U
    FEMS Yeast Res; 2012 Mar; 12(2):171-82. PubMed ID: 22136139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on sustainable yeast biotechnological processes and applications.
    Nandy SK; Srivastava RK
    Microbiol Res; 2018 Mar; 207():83-90. PubMed ID: 29458873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of yeast for production of fuels and chemicals.
    Nielsen J; Larsson C; van Maris A; Pronk J
    Curr Opin Biotechnol; 2013 Jun; 24(3):398-404. PubMed ID: 23611565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in cellulosic conversion to fuels: engineering yeasts for cellulosic bioethanol and biodiesel production.
    Ko JK; Lee SM
    Curr Opin Biotechnol; 2018 Apr; 50():72-80. PubMed ID: 29195120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals.
    Turner TL; Kim H; Kong II; Liu JJ; Zhang GC; Jin YS
    Adv Biochem Eng Biotechnol; 2018; 162():175-215. PubMed ID: 27913828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.
    Borodina I; Nielsen J
    Biotechnol J; 2014 May; 9(5):609-20. PubMed ID: 24677744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast synthetic biology toolbox and applications for biofuel production.
    Tsai CS; Kwak S; Turner TL; Jin YS
    FEMS Yeast Res; 2015 Feb; 15(1):1-15. PubMed ID: 25195615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries.
    Hong KK; Nielsen J
    Cell Mol Life Sci; 2012 Aug; 69(16):2671-90. PubMed ID: 22388689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.
    Oud B; van Maris AJ; Daran JM; Pronk JT
    FEMS Yeast Res; 2012 Mar; 12(2):183-96. PubMed ID: 22152095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces.
    Liu L; Redden H; Alper HS
    Curr Opin Biotechnol; 2013 Dec; 24(6):1023-30. PubMed ID: 23541504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation.
    Jansen MLA; Bracher JM; Papapetridis I; Verhoeven MD; de Bruijn H; de Waal PP; van Maris AJA; Klaassen P; Pronk JT
    FEMS Yeast Res; 2017 Aug; 17(5):. PubMed ID: 28899031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Robustness of Microbial Cell Factories.
    Gong Z; Nielsen J; Zhou YJ
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28857502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.
    Yen JY; Nazem-Bokaee H; Freedman BG; Athamneh AI; Senger RS
    Biotechnol J; 2013 May; 8(5):581-94. PubMed ID: 23460591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol.
    Görgens JF; Bressler DC; van Rensburg E
    Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Change, exchange, and rearrange: protein engineering for the biotechnological production of fuels, pharmaceuticals, and other chemicals.
    Fisher MA; Tullman-Ercek D
    Curr Opin Biotechnol; 2013 Dec; 24(6):1010-6. PubMed ID: 23522655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts.
    Gorter de Vries AR; Pronk JT; Daran JG
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28341679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofuels and bio-based chemicals from lignocellulose: metabolic engineering strategies in strain development.
    Chen R; Dou J
    Biotechnol Lett; 2016 Feb; 38(2):213-21. PubMed ID: 26466596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grand Research Challenges for Sustainable Industrial Biotechnology.
    Straathof AJJ; Wahl SA; Benjamin KR; Takors R; Wierckx N; Noorman HJ
    Trends Biotechnol; 2019 Oct; 37(10):1042-1050. PubMed ID: 31054854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-conventional hosts for the production of fuels and chemicals.
    Sun L; Alper HS
    Curr Opin Chem Biol; 2020 Dec; 59():15-22. PubMed ID: 32348879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.