These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 29156536)

  • 1. A review on exudates detection methods for diabetic retinopathy.
    Joshi S; Karule PT
    Biomed Pharmacother; 2018 Jan; 97():1454-1460. PubMed ID: 29156536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated detection of exudates for diabetic retinopathy screening.
    Fleming AD; Philip S; Goatman KA; Williams GJ; Olson JA; Sharp PF
    Phys Med Biol; 2007 Dec; 52(24):7385-96. PubMed ID: 18065845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decision support system for the detection and grading of hard exudates from color fundus photographs.
    Jaafar HF; Nandi AK; Al-Nuaimy W
    J Biomed Opt; 2011 Nov; 16(11):116001. PubMed ID: 22112106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of haemorrhage and exudate detection in automated grading of diabetic retinopathy.
    Fleming AD; Goatman KA; Philip S; Williams GJ; Prescott GJ; Scotland GS; McNamee P; Leese GP; Wykes WN; Sharp PF; Olson JA;
    Br J Ophthalmol; 2010 Jun; 94(6):706-11. PubMed ID: 19661069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature extraction and selection for the automatic detection of hard exudates in retinal images.
    Garcia M; Hornero R; Sánchez CI; López MI; Diez A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4969-72. PubMed ID: 18003122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated lesion detectors in retinal fundus images.
    Figueiredo IN; Kumar S; Oliveira CM; Ramos JD; Engquist B
    Comput Biol Med; 2015 Nov; 66():47-65. PubMed ID: 26378502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A contribution of image processing to the diagnosis of diabetic retinopathy--detection of exudates in color fundus images of the human retina.
    Walter T; Klein JC; Massin P; Erginay A
    IEEE Trans Med Imaging; 2002 Oct; 21(10):1236-43. PubMed ID: 12585705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Points of interest and visual dictionaries for automatic retinal lesion detection.
    Rocha A; Carvalho T; Jelinek HF; Goldenstein S; Wainer J
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2244-53. PubMed ID: 22665502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods.
    Sopharak A; Uyyanonvara B; Barman S; Williamson TH
    Comput Med Imaging Graph; 2008 Dec; 32(8):720-7. PubMed ID: 18930631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy.
    Akram MU; Tariq A; Anjum MA; Javed MY
    Appl Opt; 2012 Jul; 51(20):4858-66. PubMed ID: 22781265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Referral system for hard exudates in eye fundus.
    Naqvi SA; Zafar MF; Haq Iu
    Comput Biol Med; 2015 Sep; 64():217-35. PubMed ID: 26231313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Costs and consequences of automated algorithms versus manual grading for the detection of referable diabetic retinopathy.
    Scotland GS; McNamee P; Fleming AD; Goatman KA; Philip S; Prescott GJ; Sharp PF; Williams GJ; Wykes W; Leese GP; Olson JA;
    Br J Ophthalmol; 2010 Jun; 94(6):712-9. PubMed ID: 19965826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agreement on diabetic retinopathy grading in fundus photographs by allied ophthalmic personnel as compared to ophthalmologist at a community setting in Nepal.
    Thapa R; Bajimaya S; Pradhan E; Paudyal G
    Nepal J Ophthalmol; 2017 Jan; 9(18):43-50. PubMed ID: 29022954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy.
    Akram UM; Khan SA
    J Med Syst; 2012 Oct; 36(5):3151-62. PubMed ID: 22090037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodality analysis of Hyper-reflective Foci and Hard Exudates in Patients with Diabetic Retinopathy.
    Niu S; Yu C; Chen Q; Yuan S; Lin J; Fan W; Liu Q
    Sci Rep; 2017 May; 7(1):1568. PubMed ID: 28484225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-space clustering for segmentation of exudates in retinal color photographs.
    Ram K; Sivaswamy J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1437-40. PubMed ID: 19963747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Hard Exudates Using Evolutionary Feature Selection in Retinal Fundus Images.
    Kadan AB; Subbian PS
    J Med Syst; 2019 May; 43(7):209. PubMed ID: 31144041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion.
    Prentašić P; Lončarić S
    Comput Methods Programs Biomed; 2016 Dec; 137():281-292. PubMed ID: 28110732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diabetic retinopathy screening through artificial intelligence algorithms: A systematic review.
    Farahat Z; Zrira N; Souissi N; Bennani Y; Bencherif S; Benamar S; Belmekki M; Ngote MN; Megdiche K
    Surv Ophthalmol; 2024; 69(5):707-721. PubMed ID: 38885761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exudate detection in color retinal images for mass screening of diabetic retinopathy.
    Zhang X; Thibault G; Decencière E; Marcotegui B; Laÿ B; Danno R; Cazuguel G; Quellec G; Lamard M; Massin P; Chabouis A; Victor Z; Erginay A
    Med Image Anal; 2014 Oct; 18(7):1026-43. PubMed ID: 24972380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.