These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 29156536)
41. Automatic image processing algorithm to detect hard exudates based on mixture models. Sánchez CI; Mayo A; García M; López MI; Hornero R Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4453-6. PubMed ID: 17945839 [TBL] [Abstract][Full Text] [Related]
42. Semi-automated quantification of hard exudates in colour fundus photographs diagnosed with diabetic retinopathy. Marupally AG; Vupparaboina KK; Peguda HK; Richhariya A; Jana S; Chhablani J BMC Ophthalmol; 2017 Sep; 17(1):172. PubMed ID: 28931389 [TBL] [Abstract][Full Text] [Related]
43. Automated diabetic retinopathy imaging in Indian eyes: a pilot study. Roy R; Lobo A; Pal BP; Oliveira CM; Raman R; Sharma T Indian J Ophthalmol; 2014 Dec; 62(12):1121-4. PubMed ID: 25579354 [TBL] [Abstract][Full Text] [Related]
44. Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exudates, and of a computer-assisted diagnostic system for grading diabetic retinopathy. Dupas B; Walter T; Erginay A; Ordonez R; Deb-Joardar N; Gain P; Klein JC; Massin P Diabetes Metab; 2010 Jun; 36(3):213-20. PubMed ID: 20219404 [TBL] [Abstract][Full Text] [Related]
45. Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms. Khojasteh P; Aliahmad B; Kumar DK BMC Ophthalmol; 2018 Nov; 18(1):288. PubMed ID: 30400869 [TBL] [Abstract][Full Text] [Related]
46. Progress towards automated diabetic ocular screening: a review of image analysis and intelligent systems for diabetic retinopathy. Teng T; Lefley M; Claremont D Med Biol Eng Comput; 2002 Jan; 40(1):2-13. PubMed ID: 11954703 [TBL] [Abstract][Full Text] [Related]
47. The SUSTech-SYSU dataset for automated exudate detection and diabetic retinopathy grading. Lin L; Li M; Huang Y; Cheng P; Xia H; Wang K; Yuan J; Tang X Sci Data; 2020 Nov; 7(1):409. PubMed ID: 33219237 [TBL] [Abstract][Full Text] [Related]
48. Detection of hard exudates in retinal images using a radial basis function classifier. García M; Sánchez CI; Poza J; López MI; Hornero R Ann Biomed Eng; 2009 Jul; 37(7):1448-63. PubMed ID: 19430906 [TBL] [Abstract][Full Text] [Related]
49. Evaluation of automated image analysis software for the detection of diabetic retinopathy to reduce the ophthalmologists' workload. Soto-Pedre E; Navea A; Millan S; Hernaez-Ortega MC; Morales J; Desco MC; Pérez P Acta Ophthalmol; 2015 Feb; 93(1):e52-6. PubMed ID: 24975456 [TBL] [Abstract][Full Text] [Related]
50. Discrimination of retinal images containing bright lesions using sparse coded features and SVM. Sidibé D; Sadek I; Mériaudeau F Comput Biol Med; 2015 Jul; 62():175-84. PubMed ID: 25935125 [TBL] [Abstract][Full Text] [Related]
51. An automated decision-support system for non-proliferative diabetic retinopathy disease based on MAs and HAs detection. Saleh MD; Eswaran C Comput Methods Programs Biomed; 2012 Oct; 108(1):186-96. PubMed ID: 22551841 [TBL] [Abstract][Full Text] [Related]
52. Effective Fundus Image Decomposition for the Detection of Red Lesions and Hard Exudates to Aid in the Diagnosis of Diabetic Retinopathy. Romero-Oraá R; García M; Oraá-Pérez J; López-Gálvez MI; Hornero R Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33207825 [TBL] [Abstract][Full Text] [Related]
53. Diabetic retinopathy screening with non-mydriatic retinography by general practitioners: 2-year results. Andonegui J; Zurutuza A; de Arcelus MP; Serrano L; Eguzkiza A; Auzmendi M; Gaminde I; Aliseda D Prim Care Diabetes; 2012 Oct; 6(3):201-5. PubMed ID: 22285305 [TBL] [Abstract][Full Text] [Related]
54. Automated Identification of Diabetic Retinopathy Using Deep Learning. Gargeya R; Leng T Ophthalmology; 2017 Jul; 124(7):962-969. PubMed ID: 28359545 [TBL] [Abstract][Full Text] [Related]
55. Clinical Decision Support for the Classification of Diabetic Retinopathy: A Comparison of Manual and Automated Results. Mitsch C; Fehre K; Prager S; Scholda C; Kriechbaum K; Wrba T; Schmidt-Erfurth U Stud Health Technol Inform; 2016; 223():17-24. PubMed ID: 27139380 [TBL] [Abstract][Full Text] [Related]
56. Automatic detection of retinal anatomy to assist diabetic retinopathy screening. Fleming AD; Goatman KA; Philip S; Olson JA; Sharp PF Phys Med Biol; 2007 Jan; 52(2):331-45. PubMed ID: 17202618 [TBL] [Abstract][Full Text] [Related]
57. Teleretinal screening for diabetic retinopathy in six Los Angeles urban safety-net clinics: final study results. Ogunyemi O; George S; Patty L; Teklehaimanot S; Baker R AMIA Annu Symp Proc; 2013; 2013():1082-8. PubMed ID: 24551394 [TBL] [Abstract][Full Text] [Related]
58. Automated identification of diabetic retinal exudates in digital colour images. Osareh A; Mirmehdi M; Thomas B; Markham R Br J Ophthalmol; 2003 Oct; 87(10):1220-3. PubMed ID: 14507751 [TBL] [Abstract][Full Text] [Related]
59. A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images. Osareh A; Shadgar B; Markham R IEEE Trans Inf Technol Biomed; 2009 Jul; 13(4):535-45. PubMed ID: 19586814 [TBL] [Abstract][Full Text] [Related]