These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 29156884)
1. A Simple Method of Predicting Spin State in Solution. Rodríguez-Jiménez S; Yang M; Stewart I; Garden AL; Brooker S J Am Chem Soc; 2017 Dec; 139(50):18392-18396. PubMed ID: 29156884 [TBL] [Abstract][Full Text] [Related]
2. Predictable Electronic Tuning By Choice of Azine Substituent in Five Iron(II) Triazoles: Redox Properties and DFT Calculations. Rodríguez-Jiménez S; Bondì L; Yang M; Garden AL; Brooker S Chem Asian J; 2019 Apr; 14(8):1158-1166. PubMed ID: 30550630 [TBL] [Abstract][Full Text] [Related]
3. Solvent Polarity Predictably Tunes Spin Crossover T Rodríguez-Jiménez S; Barltrop AS; White NG; Feltham HLC; Brooker S Inorg Chem; 2018 Jun; 57(11):6266-6282. PubMed ID: 29767514 [TBL] [Abstract][Full Text] [Related]
4. Extension of Azine-Triazole Synthesis to Azole-Triazoles Reduces Ligand Field, Leading to Spin Crossover in Tris-L Fe(II). Singh S; Brooker S Inorg Chem; 2020 Jan; 59(2):1265-1273. PubMed ID: 31909611 [TBL] [Abstract][Full Text] [Related]
5. Solid Versus Solution Spin Crossover and the Importance of the Fe-N≡C(X) Angle. Rodríguez-Jiménez S; Brooker S Inorg Chem; 2017 Nov; 56(22):13697-13708. PubMed ID: 29112392 [TBL] [Abstract][Full Text] [Related]
6. Spin-Crossover Temperature Predictable from DFT Calculation for Iron(II) Complexes with 4-Substituted Pybox and Related Heteroaromatic Ligands. Kimura A; Ishida T ACS Omega; 2018 Jun; 3(6):6737-6747. PubMed ID: 31458846 [TBL] [Abstract][Full Text] [Related]
7. Bistable spin-crossover in a new series of [Fe(BPP-R) Senthil Kumar K; Del Giudice N; Heinrich B; Douce L; Ruben M Dalton Trans; 2020 Oct; 49(40):14258-14267. PubMed ID: 33026376 [TBL] [Abstract][Full Text] [Related]
8. Slow spin crossover in bis-meridional Fe Petzold H; Hörner G; Schnaubelt L; Rüffer T Dalton Trans; 2018 Dec; 47(48):17257-17265. PubMed ID: 30488935 [TBL] [Abstract][Full Text] [Related]
9. A Unified Treatment of the Relationship Between Ligand Substituents and Spin State in a Family of Iron(II) Complexes. Kershaw Cook LJ; Kulmaczewski R; Mohammed R; Dudley S; Barrett SA; Little MA; Deeth RJ; Halcrow MA Angew Chem Int Ed Engl; 2016 Mar; 55(13):4327-31. PubMed ID: 26929084 [TBL] [Abstract][Full Text] [Related]
10. Spin-crossover in iron(II)-phenylene ethynylene-2,6-di(pyrazol-1-yl) pyridine hybrids: toward switchable molecular wire-like architectures. Senthil Kumar K; Šalitroš I; Heinrich B; Moldovan S; Mauro M; Ruben M J Phys Condens Matter; 2020 May; 32(20):204002. PubMed ID: 31945748 [TBL] [Abstract][Full Text] [Related]
11. Ab Initio Ligand Field Molecular Mechanics and the Nature of Metal-Ligand π-Bonding in Fe(II) 2,6-di(pyrazol-1-yl)pyridine Spin Crossover Complexes. Deeth RJ; Halcrow MA; Kershaw Cook LJ; Raithby PR Chemistry; 2018 Apr; 24(20):5204-5212. PubMed ID: 29112322 [TBL] [Abstract][Full Text] [Related]
12. Predictable electronic tuning of Fe Robb MG; Bondì L; Rodríguez-Jiménez S; Garden AL; Jerabek P; Brooker S Dalton Trans; 2024 Jan; 53(5):1999-2007. PubMed ID: 38205818 [TBL] [Abstract][Full Text] [Related]
13. Above room temperature spin crossover in thioamide-functionalised 2,6-bis(pyrazol-1-yl)pyridine iron(ii) complexes. Attwood M; Akutsu H; Martin L; Cruickshank D; Turner SS Dalton Trans; 2018 Dec; 48(1):90-98. PubMed ID: 30456406 [TBL] [Abstract][Full Text] [Related]
14. One-step and two-step spin-crossover iron(II) complexes of ((2-methylimidazol-4-yl)methylidene)histamine. Sato T; Nishi K; Iijima S; Kojima M; Matsumoto N Inorg Chem; 2009 Aug; 48(15):7211-29. PubMed ID: 19722691 [TBL] [Abstract][Full Text] [Related]
15. Room-Temperature Spin Crossover in a Solution of Iron(II) Complexes with Aleshin DY; Nikovskiy I; Novikov VV; Polezhaev AV; Melnikova EK; Nelyubina YV ACS Omega; 2021 Dec; 6(48):33111-33121. PubMed ID: 34901662 [TBL] [Abstract][Full Text] [Related]
16. Iron(II) Complexes of 2,4-Dipyrazolyl-1,3,5-triazine Derivatives-The Influence of Ligand Geometry on Metal Ion Spin State. Capel Berdiell I; Kulmaczewski R; Halcrow MA Inorg Chem; 2017 Aug; 56(15):8817-8828. PubMed ID: 28699741 [TBL] [Abstract][Full Text] [Related]
17. Spin state variability in Fe Petzold H; Djomgoue P; Hörner G; Heider S; Lochenie C; Weber B; Rüffer T; Schaarschmidt D Dalton Trans; 2017 May; 46(19):6218-6229. PubMed ID: 28443910 [TBL] [Abstract][Full Text] [Related]
18. Quantitative and Chemically Intuitive Evaluation of the Nature of M-L Bonds in Paramagnetic Compounds: Application of EDA-NOCV Theory to Spin Crossover Complexes. Bondì L; Garden AL; Jerabek P; Totti F; Brooker S Chemistry; 2020 Oct; 26(60):13677-13685. PubMed ID: 32671882 [TBL] [Abstract][Full Text] [Related]
19. Insights into the crystal-packing effects on the spin crossover of [Fe(II)(1-bpp)](2+)-based materials. Vela S; Novoa JJ; Ribas-Arino J Phys Chem Chem Phys; 2014 Dec; 16(48):27012-24. PubMed ID: 25380527 [TBL] [Abstract][Full Text] [Related]
20. Spin crossover in Fe(II) and Co(II) complexes with the same click-derived tripodal ligand. Schweinfurth D; Demeshko S; Hohloch S; Steinmetz M; Brandenburg JG; Dechert S; Meyer F; Grimme S; Sarkar B Inorg Chem; 2014 Aug; 53(16):8203-12. PubMed ID: 25090159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]