These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29156978)

  • 1. Bone Marrow Progenitor Cells Isolated from Young Rabbit Trochlea Are More Numerous and Exhibit Greater Clonogenic, Chondrogenic, and Osteogenic Potential than Cells Isolated from Condyles.
    Dwivedi G; Chevrier A; Hoemann CD; Buschmann MD
    Cartilage; 2018 Oct; 9(4):378-390. PubMed ID: 29156978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quality of Cartilage Repair from Marrow Stimulation Correlates with Cell Number, Clonogenic, Chondrogenic, and Matrix Production Potential of Underlying Bone Marrow Stromal Cells in a Rabbit Model.
    Dwivedi G; Chevrier A; Alameh MG; Hoemann CD; Buschmann MD
    Cartilage; 2021 Apr; 12(2):237-250. PubMed ID: 30569762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison.
    Huang JI; Kazmi N; Durbhakula MM; Hering TM; Yoo JU; Johnstone B
    J Orthop Res; 2005 Nov; 23(6):1383-9. PubMed ID: 15936917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model.
    Fu WL; Zhou CY; Yu JK
    Am J Sports Med; 2014 Mar; 42(3):592-601. PubMed ID: 24327479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subchondral bone derived mesenchymal stem cells display enhanced osteo-chondrogenic differentiation, self-renewal and proliferation potentials.
    Zhang H; Li ZL; Su XZ; Ding L; Li J; Zhu H
    Exp Anim; 2018 Jul; 67(3):349-359. PubMed ID: 29515059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interspecies comparison of subchondral bone properties important for cartilage repair.
    Chevrier A; Kouao AS; Picard G; Hurtig MB; Buschmann MD
    J Orthop Res; 2015 Jan; 33(1):63-70. PubMed ID: 25242685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone marrow stimulation induces greater chondrogenesis in trochlear vs condylar cartilage defects in skeletally mature rabbits.
    Chen H; Chevrier A; Hoemann CD; Sun J; Lascau-Coman V; Buschmann MD
    Osteoarthritis Cartilage; 2013 Jul; 21(7):999-1007. PubMed ID: 23611900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of age and sampling site on the chondro-osteogenic potential of rabbit marrow-derived mesenchymal progenitor cells.
    Huibregtse BA; Johnstone B; Goldberg VM; Caplan AI
    J Orthop Res; 2000 Jan; 18(1):18-24. PubMed ID: 10716274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?
    Im GI; Shin YW; Lee KB
    Osteoarthritis Cartilage; 2005 Oct; 13(10):845-53. PubMed ID: 16129630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic plasticity of human articular chondrocytes.
    Tallheden T; Dennis JE; Lennon DP; Sjögren-Jansson E; Caplan AI; Lindahl A
    J Bone Joint Surg Am; 2003; 85-A Suppl 2():93-100. PubMed ID: 12721350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chondrogenic differentiation potential of adult and fetal equine cell types.
    Adam EN; Janes J; Lowney R; Lambert J; Thampi P; Stromberg A; MacLeod JN
    Vet Surg; 2019 Apr; 48(3):375-387. PubMed ID: 30801754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage.
    Wakitani S; Goto T; Pineda SJ; Young RG; Mansour JM; Caplan AI; Goldberg VM
    J Bone Joint Surg Am; 1994 Apr; 76(4):579-92. PubMed ID: 8150826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers.
    Friedenstein AJ; Chailakhyan RK; Gerasimov UV
    Cell Tissue Kinet; 1987 May; 20(3):263-72. PubMed ID: 3690622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma-Derived Fibronectin Stimulates Chondrogenic Differentiation of Human Subchondral Cortico-Spongious Progenitor Cells in Late-Stage Osteoarthritis.
    Jiang C; Ma P; Ma B; Wu Z; Qiu G; Su X; Xia Z; Ye Z; Wang Y
    Int J Mol Sci; 2015 Aug; 16(8):19477-89. PubMed ID: 26295224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subchondral bone changes and chondrogenic capacity of progenitor cells from subchondral bone in the collagenase-induced temporomandibular joints osteoarthritis rabbit model.
    Wu G; Zhu S; Sun X; Hu J
    Int J Clin Exp Pathol; 2015; 8(9):9782-9. PubMed ID: 26617688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteogenesis and chondrogenesis of biomimetic integrated porous PVA/gel/V-n-HA/pa6 scaffolds and BMSCs construct in repair of articular osteochondral defect.
    Li X; Li Y; Zuo Y; Qu D; Liu Y; Chen T; Jiang N; Li H; Li J
    J Biomed Mater Res A; 2015 Oct; 103(10):3226-36. PubMed ID: 25772000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chondrogenic differentiation capacity of human mesenchymal progenitor cells derived from subchondral cortico-spongious bone.
    Neumann K; Dehne T; Endres M; Erggelet C; Kaps C; Ringe J; Sittinger M
    J Orthop Res; 2008 Nov; 26(11):1449-56. PubMed ID: 18464264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.
    Guerrero J; Pigeot S; Müller J; Schaefer DJ; Martin I; Scherberich A
    Acta Biomater; 2018 Sep; 77():142-154. PubMed ID: 30126590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells.
    Johnstone B; Hering TM; Caplan AI; Goldberg VM; Yoo JU
    Exp Cell Res; 1998 Jan; 238(1):265-72. PubMed ID: 9457080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low oxygen expansion improves subsequent chondrogenesis of ovine bone-marrow-derived mesenchymal stem cells in collagen type I hydrogel.
    Zscharnack M; Poesel C; Galle J; Bader A
    Cells Tissues Organs; 2009; 190(2):81-93. PubMed ID: 19033681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.