BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29157260)

  • 1. High-resolution and accelerated multi-parametric mapping with automated characterization of vessel disease using intravascular MRI.
    Wang G; Zhang Y; Hegde SS; Bottomley PA
    J Cardiovasc Magn Reson; 2017 Nov; 19(1):89. PubMed ID: 29157260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of human atherosclerotic plaques by intravascular magnetic resonance imaging.
    Larose E; Yeghiazarians Y; Libby P; Yucel EK; Aikawa M; Kacher DF; Aikawa E; Kinlay S; Schoen FJ; Selwyn AP; Ganz P
    Circulation; 2005 Oct; 112(15):2324-31. PubMed ID: 16203910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of coronary atherosclerotic plaques ex vivo with T1, T2, and ultrashort echo time CMR.
    Károlyi M; Seifarth H; Liew G; Schlett CL; Maurovich-Horvat P; Stolzmann P; Dai G; Huang S; Goergen CJ; Nakano M; Otsuka F; Virmani R; Hoffmann U; Sosnovik DE
    JACC Cardiovasc Imaging; 2013 Apr; 6(4):466-74. PubMed ID: 23498670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evaluation of the detectability of submillimeter atherosclerotic lesions in ex vivo human iliac arteries with ultrahigh-field (7.0 T) magnetic resonance imaging.
    Jahnke C; Dietrich T; Paetsch I; Koehler U; Preetz K; Schnackenburg B; Fleck E; Graf K; Nagel E
    Int J Cardiovasc Imaging; 2007 Aug; 23(4):519-27. PubMed ID: 17109199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid three-dimensional quantification of high-intensity plaques from coronary atherosclerosis T
    Nakazawa M; Matsumoto H; Li D; Slomka PJ; Dey D; Cadet S; Isodono K; Irie D; Higuchi S; Tanisawa H; Ohya H; Kitamura R; Komori Y; Hondera T; Sato I; Lee HL; Christodoulou AG; Xie Y; Shinke T
    J Cardiovasc Magn Reson; 2024 Summer; 26(1):100999. PubMed ID: 38237903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffuse coronary artery disease among other atherosclerotic plaque characteristics by coronary computed tomography angiography for predicting coronary vessel-specific ischemia by fractional flow reserve.
    Rizvi A; Hartaigh BÓ; Danad I; Han D; Lee JH; Gransar H; Szymonifka J; Lin FY; Min JK
    Atherosclerosis; 2017 Mar; 258():145-151. PubMed ID: 28168977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Accelerated, Intravascular T1, T2, and Proton Density Mapping with Linear Algebraic Modeling and Sensitivity Profile Correction at 3T.
    Wang G; Zhang Y; Hegde SS; Bottomley PA
    Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib; 2016 May; 24():2829. PubMed ID: 28649183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-vivo quantitative T2 mapping of carotid arteries in atherosclerotic patients: segmentation and T2 measurement of plaque components.
    Biasiolli L; Lindsay AC; Chai JT; Choudhury RP; Robson MD
    J Cardiovasc Magn Reson; 2013 Aug; 15(1):69. PubMed ID: 23953780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiovascular magnetic resonance imaging of aorto-iliac and ilio-femoral vascular calcifications using proton density-weighted in-phase stack of stars.
    Serhal A; Koktzoglou I; Aouad P; Carr JC; Giri S; Morcos O; Edelman RR
    J Cardiovasc Magn Reson; 2018 Aug; 20(1):51. PubMed ID: 30078377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of the focal progression of coronary atherosclerosis through automated co-registration of virtual histology-intravascular ultrasound imaging data.
    Timmins LH; Molony DS; Eshtehardi P; Rasoul-Arzrumly E; Lam A; Hung OY; McDaniel MC; Oshinski JN; Giddens DP; Samady H
    Int J Cardiovasc Imaging; 2017 Jan; 33(1):13-24. PubMed ID: 27844239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic quantification and characterization of coronary atherosclerosis with computed tomography coronary angiography: cross-correlation with intravascular ultrasound virtual histology.
    de Graaf MA; Broersen A; Kitslaar PH; Roos CJ; Dijkstra J; Lelieveldt BP; Jukema JW; Schalij MJ; Delgado V; Bax JJ; Reiber JH; Scholte AJ
    Int J Cardiovasc Imaging; 2013 Jun; 29(5):1177-90. PubMed ID: 23417447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coronary Atherosclerosis T
    Xie Y; Kim YJ; Pang J; Kim JS; Yang Q; Wei J; Nguyen CT; Deng Z; Choi BW; Fan Z; Bairey Merz CN; Shah PK; Berman DS; Chang HJ; Li D
    JACC Cardiovasc Imaging; 2017 Jun; 10(6):637-648. PubMed ID: 27743950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust volume-targeted balanced steady-state free-precession coronary magnetic resonance angiography in a breathhold at 3.0 Tesla: a reproducibility study.
    Soleimanifard S; Stuber M; Hays AG; Weiss RG; Schär M
    J Cardiovasc Magn Reson; 2014 Apr; 16(1):27. PubMed ID: 24758168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Total coronary atherosclerotic plaque burden assessment by CT angiography for detecting obstructive coronary artery disease associated with myocardial perfusion abnormalities.
    Kishi S; Magalhães TA; Cerci RJ; Matheson MB; Vavere A; Tanami Y; Kitslaar PH; George RT; Brinker J; Miller JM; Clouse ME; Lemos PA; Niinuma H; Reiber JH; Rochitte CE; Rybicki FJ; Di Carli MF; Cox C; Lima JA; Arbab-Zadeh A
    J Cardiovasc Comput Tomogr; 2016; 10(2):121-7. PubMed ID: 26817414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of longitudinal distribution of subclinical atherosclerosis in femoral arteries by three-dimensional cardiovascular magnetic resonance vessel wall imaging.
    Han Y; Guan M; Zhu Z; Li D; Chen H; Yuan C; Li C; Wang W; Zhao X
    J Cardiovasc Magn Reson; 2018 Sep; 20(1):60. PubMed ID: 30173671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry.
    van Rosendael AR; Maliakal G; Kolli KK; Beecy A; Al'Aref SJ; Dwivedi A; Singh G; Panday M; Kumar A; Ma X; Achenbach S; Al-Mallah MH; Andreini D; Bax JJ; Berman DS; Budoff MJ; Cademartiri F; Callister TQ; Chang HJ; Chinnaiyan K; Chow BJW; Cury RC; DeLago A; Feuchtner G; Hadamitzky M; Hausleiter J; Kaufmann PA; Kim YJ; Leipsic JA; Maffei E; Marques H; Pontone G; Raff GL; Rubinshtein R; Shaw LJ; Villines TC; Gransar H; Lu Y; Jones EC; Peña JM; Lin FY; Min JK
    J Cardiovasc Comput Tomogr; 2018; 12(3):204-209. PubMed ID: 29753765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast compartmentalized relaxation time mapping with linear algebraic modeling.
    Zhang Y; Liu X; Zhou J; Bottomley PA
    Magn Reson Med; 2018 Jan; 79(1):286-297. PubMed ID: 28401643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Feasibility of using intravascular loopless monopole antenna to image atherosclerotic plaque in a porcine model with 3.0 T magnetic resonance imaging].
    Zhao L; Zhang C; Ma XH; Shang JF; Yuan HY; Zhang J; Zhang ZQ
    Zhonghua Xin Xue Guan Bing Za Zhi; 2013 May; 41(5):411-5. PubMed ID: 24021125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ex-vivo imaging and plaque type classification of intracranial atherosclerotic plaque using high resolution MRI.
    Jiang Y; Zhu C; Peng W; Degnan AJ; Chen L; Wang X; Liu Q; Wang Y; Xiang Z; Teng Z; Saloner D; Lu J
    Atherosclerosis; 2016 Jun; 249():10-6. PubMed ID: 27062404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical application of effective atomic number for classifying non-calcified coronary plaques by dual-energy computed tomography.
    Nakajima S; Ito H; Mitsuhashi T; Kubo Y; Matsui K; Tanaka I; Fukui R; Omori H; Nakaoka T; Sakura H; Ueno E; Machida H
    Atherosclerosis; 2017 Jun; 261():138-143. PubMed ID: 28372786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.