BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 29157277)

  • 1. A validated antibody panel for the characterization of tau post-translational modifications.
    Ercan E; Eid S; Weber C; Kowalski A; Bichmann M; Behrendt A; Matthes F; Krauss S; Reinhardt P; Fulle S; Ehrnhoefer DE
    Mol Neurodegener; 2017 Nov; 12(1):87. PubMed ID: 29157277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-Translational Modifications in Tau and Their Roles in Alzheimer's Pathology.
    Kalyaanamoorthy S; Opare SK; Xu X; Ganesan A; Rao PPN
    Curr Alzheimer Res; 2024 Apr; ():. PubMed ID: 38623984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SETD7-mediated monomethylation is enriched on soluble Tau in Alzheimer's disease.
    Bichmann M; Prat Oriol N; Ercan-Herbst E; Schöndorf DC; Gomez Ramos B; Schwärzler V; Neu M; Schlüter A; Wang X; Jin L; Hu C; Tian Y; Ried JS; Haberkant P; Gasparini L; Ehrnhoefer DE
    Mol Neurodegener; 2021 Jul; 16(1):46. PubMed ID: 34215303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current Technologies Unraveling the Significance of Post-Translational Modifications (PTMs) as Crucial Players in Neurodegeneration.
    Zafar S; Fatima SI; Schmitz M; Zerr I
    Biomolecules; 2024 Jan; 14(1):. PubMed ID: 38254718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of Methylation and Phosphorylation Stoichiometry.
    Ayoub CA; Moore KI; Kuret J
    Methods Mol Biol; 2024; 2754():221-235. PubMed ID: 38512670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methylation as a key regulator of Tau aggregation and neuronal health in Alzheimer's disease.
    Balmik AA; Chinnathambi S
    Cell Commun Signal; 2021 May; 19(1):51. PubMed ID: 33962636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed evolution of a picomolar-affinity, high-specificity antibody targeting phosphorylated tau.
    Li D; Wang L; Maziuk BF; Yao X; Wolozin B; Cho YK
    J Biol Chem; 2018 Aug; 293(31):12081-12094. PubMed ID: 29899114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of high-performing antibodies for the reliable detection of Tau proteoforms by Western blotting and immunohistochemistry.
    Ellis MJ; Lekka C; Holden KL; Tulmin H; Seedat F; O'Brien DP; Dhayal S; Zeissler ML; Knudsen JG; Kessler BM; Morgan NG; Todd JA; Richardson SJ; Stefana MI
    Acta Neuropathol; 2024 May; 147(1):87. PubMed ID: 38761203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alzheimer proteopathic tau seeds are biochemically a forme fruste of mature paired helical filaments.
    Kumar M; Quittot N; Dujardin S; Schlaffner CN; Viode A; Wiedmer A; Beerepoot P; Chun JE; Glynn C; Fernandes AR; Donahue C; Steen JA; Hyman BT
    Brain; 2024 Feb; 147(2):637-648. PubMed ID: 38236720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Western Blot of Tau Protein from Mouse Brains Extracts: How to Avoid Signal Artifacts.
    Fereydouni-Forouzandeh P; Canet G; Diego-Diàz S; Rocaboy E; Petry S; Whittington RA; Planel E
    Methods Mol Biol; 2024; 2754():309-321. PubMed ID: 38512673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholinergic System and Post-translational Modifications: An Insight on the Role in Alzheimer's Disease.
    Ahmed T; Zahid S; Mahboob A; Farhat SM
    Curr Neuropharmacol; 2017; 15(4):480-494. PubMed ID: 27012953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical approaches to assess the impact of post-translational modifications on pathogenic tau conformations using recombinant protein.
    Alhadidy MM; Kanaan NM
    Biochem Soc Trans; 2024 Feb; 52(1):301-318. PubMed ID: 38348781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Analysis of Post-Translational Modifications of Human Serum Albumin Derived from Human Plasma and Recombinant Sources in China.
    Liu Q; Lin Z; Li C; Wang Z; Xu J; Cheng L; Ma L; Wang Z
    Discov Med; 2024 May; 36(184):1054-1069. PubMed ID: 38798264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a reciprocal negative feedback loop between tau-modifying proteins MARK2 kinase and CBP acetyltransferase.
    Tabassum Z; Tseng JH; Isemann C; Tian X; Chen Y; Herring LE; Cohen TJ
    J Biol Chem; 2022 Jun; 298(6):101977. PubMed ID: 35469920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post translational modifications at the verge of plant-geminivirus interaction.
    Prasad A; Sharma S; Prasad M
    Biochim Biophys Acta Gene Regul Mech; 2023 Dec; 1866(4):194983. PubMed ID: 37717937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-Translational Modifications Control Phase Transitions of Tau.
    Powell WC; Nahum M; Pankratz K; Herlory M; Greenwood J; Poliyenko D; Holland P; Jing R; Biggerstaff L; Stowell MHB; Walczak MA
    bioRxiv; 2024 Mar; ():. PubMed ID: 38559065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative profiling of posttranslational modifications of pathological tau via sarkosyl fractionation and mass spectrometry.
    Wenger K; Viode A; Kumar M; Steen H; Steen JA
    Nat Protoc; 2024 Apr; 19(4):1235-1251. PubMed ID: 38291250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A global view of the human post-translational modification landscape.
    Kitamura N; Galligan JJ
    Biochem J; 2023 Aug; 480(16):1241-1265. PubMed ID: 37610048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PyTMs: a useful PyMOL plugin for modeling common post-translational modifications.
    Warnecke A; Sandalova T; Achour A; Harris RA
    BMC Bioinformatics; 2014 Nov; 15(1):370. PubMed ID: 25431162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigallocatechin-3-gallate modulates Tau Post-translational modifications and cytoskeletal network.
    Sonawane SK; Chinnathambi S
    Oncotarget; 2021 May; 12(11):1083-1099. PubMed ID: 34084282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.