BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 29157445)

  • 1. An ensemble deep learning based approach for red lesion detection in fundus images.
    Orlando JI; Prokofyeva E; Del Fresno M; Blaschko MB
    Comput Methods Programs Biomed; 2018 Jan; 153():115-127. PubMed ID: 29157445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms.
    Khojasteh P; Aliahmad B; Kumar DK
    BMC Ophthalmol; 2018 Nov; 18(1):288. PubMed ID: 30400869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep image mining for diabetic retinopathy screening.
    Quellec G; Charrière K; Boudi Y; Cochener B; Lamard M
    Med Image Anal; 2017 Jul; 39():178-193. PubMed ID: 28511066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microaneurysms detection in color fundus images using machine learning based on directional local contrast.
    Long S; Chen J; Hu A; Liu H; Chen Z; Zheng D
    Biomed Eng Online; 2020 Apr; 19(1):21. PubMed ID: 32295576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hard exudate detection based on deep model learned information and multi-feature joint representation for diabetic retinopathy screening.
    Wang H; Yuan G; Zhao X; Peng L; Wang Z; He Y; Qu C; Peng Z
    Comput Methods Programs Biomed; 2020 Jul; 191():105398. PubMed ID: 32092614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy.
    Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC
    Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic detection of microaneurysms in retinal fundus images.
    Wu B; Zhu W; Shi F; Zhu S; Chen X
    Comput Med Imaging Graph; 2017 Jan; 55():106-112. PubMed ID: 27595214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microaneurysm detection in fundus images using a two-step convolutional neural network.
    Eftekhari N; Pourreza HR; Masoudi M; Ghiasi-Shirazi K; Saeedi E
    Biomed Eng Online; 2019 May; 18(1):67. PubMed ID: 31142335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microaneurysm Detection Using Principal Component Analysis and Machine Learning Methods.
    Cao W; Czarnek N; Shan J; Li L
    IEEE Trans Nanobioscience; 2018 Jul; 17(3):191-198. PubMed ID: 29994317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical Geometrical Features for Microaneurysm Detection.
    Manjaramkar A; Kokare M
    J Digit Imaging; 2018 Apr; 31(2):224-234. PubMed ID: 28785874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning.
    Sugeno A; Ishikawa Y; Ohshima T; Muramatsu R
    Comput Biol Med; 2021 Oct; 137():104795. PubMed ID: 34488028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microaneurysm detection using fully convolutional neural networks.
    Chudzik P; Majumdar S; Calivá F; Al-Diri B; Hunter A
    Comput Methods Programs Biomed; 2018 May; 158():185-192. PubMed ID: 29544784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proliferative diabetic retinopathy characterization based on fractal features: Evaluation on a publicly available dataset.
    Orlando JI; van Keer K; Barbosa Breda J; Manterola HL; Blaschko MB; Clausse A
    Med Phys; 2017 Dec; 44(12):6425-6434. PubMed ID: 29044550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated Identification of Diabetic Retinopathy Using Deep Learning.
    Gargeya R; Leng T
    Ophthalmology; 2017 Jul; 124(7):962-969. PubMed ID: 28359545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical Report Guided Retinal Microaneurysm Detection With Multi-Sieving Deep Learning.
    Dai L; Fang R; Li H; Hou X; Sheng B; Wu Q; Jia W
    IEEE Trans Med Imaging; 2018 May; 37(5):1149-1161. PubMed ID: 29727278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Microaneurysms in Fundus Images Based on an Attention Mechanism.
    Zhang L; Feng S; Duan G; Li Y; Liu G
    Genes (Basel); 2019 Oct; 10(10):. PubMed ID: 31627420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning Approach for Automatic Microaneurysms Detection.
    Mateen M; Malik TS; Hayat S; Hameed M; Sun S; Wen J
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of microaneurysms using ant colony algorithm in the early diagnosis of diabetic retinopathy.
    Selçuk T; Alkan A
    Med Hypotheses; 2019 Aug; 129():109242. PubMed ID: 31371092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion.
    Prentašić P; Lončarić S
    Comput Methods Programs Biomed; 2016 Dec; 137():281-292. PubMed ID: 28110732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.