These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29157658)

  • 1. Continuous ambulatory hand force monitoring during manual materials handling using instrumented force shoes and an inertial motion capture suit.
    Faber GS; Koopman AS; Kingma I; Chang CC; Dennerlein JT; van Dieën JH
    J Biomech; 2018 Mar; 70():235-241. PubMed ID: 29157658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a wearable system for 3D ambulatory L5/S1 moment assessment during manual lifting using instrumented shoes and an inertial sensor suit.
    Faber GS; Kingma I; Chang CC; Dennerlein JT; van Dieën JH
    J Biomech; 2020 Mar; 102():109671. PubMed ID: 32143885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system.
    Faber GS; Chang CC; Kingma I; Dennerlein JT; van Dieën JH
    J Biomech; 2016 Apr; 49(6):904-912. PubMed ID: 26795123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating dynamic external hand forces during manual materials handling based on ground reaction forces and body segment accelerations.
    Faber GS; Chang CC; Kingma I; Dennerlein JT
    J Biomech; 2013 Oct; 46(15):2736-40. PubMed ID: 23992763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating the L5S1 flexion/extension moment in symmetrical lifting using a simplified ambulatory measurement system.
    Koopman AS; Kingma I; Faber GS; Bornmann J; van Dieën JH
    J Biomech; 2018 Mar; 70():242-248. PubMed ID: 29054609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating Compressive and Shear Forces at L5-S1: Exploring the Effects of Load Weight, Asymmetry, and Height Using Optical and Inertial Motion Capture Systems.
    Nail-Ulloa I; Zabala M; Sesek R; Chen H; Schall MC; Gallagher S
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of joint moments with instrumented force shoes in a variety of tasks.
    Faber GS; Kingma I; Martin Schepers H; Veltink PH; van Dieën JH
    J Biomech; 2010 Oct; 43(14):2848-54. PubMed ID: 20674922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of Spinal Loading During Manual Materials Handling Using Inertial Motion Capture.
    Larsen FG; Svenningsen FP; Andersen MS; de Zee M; Skals S
    Ann Biomed Eng; 2020 Feb; 48(2):805-821. PubMed ID: 31748833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of a low-cost inertial motion capture system for whole-body motion analysis.
    Robert-Lachaine X; Mecheri H; Muller A; Larue C; Plamondon A
    J Biomech; 2020 Jan; 99():109520. PubMed ID: 31787261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial motion capture validation of 3D knee kinematics at various gait speed on the treadmill with a double-pose calibration.
    Robert-Lachaine X; Parent G; Fuentes A; Hagemeister N; Aissaoui R
    Gait Posture; 2020 Mar; 77():132-137. PubMed ID: 32035296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inertial Motion Capture-Based Estimation of L5/S1 Moments during Manual Materials Handling.
    Muller A; Mecheri H; Corbeil P; Plamondon A; Robert-Lachaine X
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance evaluation of a wearable inertial motion capture system for capturing physical exposures during manual material handling tasks.
    Kim S; Nussbaum MA
    Ergonomics; 2013; 56(2):314-26. PubMed ID: 23231730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bottom-up estimation of joint moments during manual lifting using orientation sensors instead of position sensors.
    Faber GS; Kingma I; van Dieën JH
    J Biomech; 2010 May; 43(7):1432-6. PubMed ID: 20189574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity comparison of inertial to optical motion capture during gait: implications for tracking recovery.
    Lee J; Shin SY; Ghorpade G; Akbas T; Sulzer J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():139-144. PubMed ID: 31374620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Musculoskeletal model-based inverse dynamic analysis under ambulatory conditions using inertial motion capture.
    Karatsidis A; Jung M; Schepers HM; Bellusci G; de Zee M; Veltink PH; Andersen MS
    Med Eng Phys; 2019 Mar; 65():68-77. PubMed ID: 30737118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inertial Motion Capture-Based Whole-Body Inverse Dynamics.
    Diraneyya MM; Ryu J; Abdel-Rahman E; Haas CT
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of Vertical Ground Reaction Forces and Sagittal Knee Kinematics During Running Using Three Inertial Sensors.
    Wouda FJ; Giuberti M; Bellusci G; Maartens E; Reenalda J; van Beijnum BF; Veltink PH
    Front Physiol; 2018; 9():218. PubMed ID: 29623042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel wearable measurement system for ambulatory assessment of joint loading in the occupational setting.
    Faber G; Chang CC; Kingma I; Dennerlein JT
    Work; 2012; 41 Suppl 1():5527-8. PubMed ID: 22317604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supporting the upper body with the hand on the thigh reduces back loading during lifting.
    Kingma I; Faber GS; van Dieën JH
    J Biomech; 2016 Apr; 49(6):881-889. PubMed ID: 26475223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Promising Wearable Solution for the Practical and Accurate Monitoring of Low Back Loading in Manual Material Handling.
    Matijevich ES; Volgyesi P; Zelik KE
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.