These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29157658)

  • 21. Ambulatory assessment of ankle and foot dynamics.
    Schepers HM; Koopman HF; Veltink PH
    IEEE Trans Biomed Eng; 2007 May; 54(5):895-902. PubMed ID: 17518287
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The error of L5/S1 joint moment calculation in a body-centered non-inertial reference frame when the fictitious force is ignored.
    Xu X; Faber GS; Kingma I; Chang CC; Hsiang SM
    J Biomech; 2013 Jul; 46(11):1943-7. PubMed ID: 23768468
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture.
    Karatsidis A; Bellusci G; Schepers HM; de Zee M; Andersen MS; Veltink PH
    Sensors (Basel); 2016 Dec; 17(1):. PubMed ID: 28042857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of vertical walking ground reaction force in real-life environments using single IMU sensor.
    Shahabpoor E; Pavic A
    J Biomech; 2018 Oct; 79():181-190. PubMed ID: 30195851
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ambulatory estimation of foot placement during walking using inertial sensors.
    Martin Schepers H; van Asseldonk EH; Baten CT; Veltink PH
    J Biomech; 2010 Dec; 43(16):3138-43. PubMed ID: 20723901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of lower back muscle force in a lifting task using wearable IMUs.
    Shakourisalim M; Martinez KB; Golabchi A; Tavakoli M; Rouhani H
    J Biomech; 2024 Apr; 167():112077. PubMed ID: 38599020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ambulatory assessment of walking balance after stroke using instrumented shoes.
    van Meulen FB; Weenk D; Buurke JH; van Beijnum BJ; Veltink PH
    J Neuroeng Rehabil; 2016 May; 13(1):48. PubMed ID: 27198134
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ambulatory estimation of center of mass displacement during walking.
    Schepers HM; van Asseldonk EH; Buurke JH; Veltink PH
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):1189-95. PubMed ID: 19174347
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors.
    Khurelbaatar T; Kim K; Lee S; Kim YH
    Gait Posture; 2015 Jun; 42(1):65-9. PubMed ID: 25957652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The knee adduction moment measured with an instrumented force shoe in patients with knee osteoarthritis.
    van den Noort JC; van der Esch M; Steultjens MP; Dekker J; Schepers HM; Veltink PH; Harlaar J
    J Biomech; 2012 Jan; 45(2):281-8. PubMed ID: 22079386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine Learning for Optical Motion Capture-Driven Musculoskeletal Modelling from Inertial Motion Capture Data.
    Dasgupta A; Sharma R; Mishra C; Nagaraja VH
    Bioengineering (Basel); 2023 Apr; 10(5):. PubMed ID: 37237580
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using inertial measurement units to estimate spine joint kinematics and kinetics during walking and running.
    Sibson BE; Banks JJ; Yawar A; Yegian AK; Anderson DE; Lieberman DE
    Sci Rep; 2024 Jan; 14(1):234. PubMed ID: 38168540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of joint forces and moments for the in-run and take-off in ski jumping based on measurements with wearable inertial sensors.
    Logar G; Munih M
    Sensors (Basel); 2015 May; 15(5):11258-76. PubMed ID: 25985167
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inertial Motion Capture-Based Wearable Systems for Estimation of Joint Kinetics: A Systematic Review.
    Lee CJ; Lee JK
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shoulder torques resulting from luggage handling tasks in non-inertial frames.
    Shippen J; May B
    Technol Health Care; 2018; 26(S2):565-569. PubMed ID: 29843279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Portable Gait Lab: Estimating Over-Ground 3D Ground Reaction Forces Using Only a Pelvis IMU.
    Mohamed Refai MI; van Beijnum BF; Buurke JH; Veltink PH
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An accurate estimation of the horizontal acceleration of a rower's centre of mass using inertial sensors: a validation.
    Lintmeijer LL; Faber GS; Kruk HR; van Soest AJK; Hofmijster MJ
    Eur J Sport Sci; 2018 Aug; 18(7):940-946. PubMed ID: 29746794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of instrumented shoes for ambulatory assessment of ground reaction forces.
    Liedtke C; Fokkenrood SA; Menger JT; van der Kooij H; Veltink PH
    Gait Posture; 2007 Jun; 26(1):39-47. PubMed ID: 17010612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ambulatory measurement of ground reaction forces.
    Veltink PH; Liedtke C; Droog E; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):423-7. PubMed ID: 16200765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.