These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29157658)

  • 41. Estimation of ground reaction forces and joint moments on the basis on plantar pressure insoles and wearable sensors for joint angle measurement.
    Ostaszewski M; Pauk J
    Technol Health Care; 2018; 26(S2):605-612. PubMed ID: 29843283
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Deep Neural Network-based method for estimation of 3D lifting motions.
    Mehrizi R; Peng X; Xu X; Zhang S; Li K
    J Biomech; 2019 Feb; 84():87-93. PubMed ID: 30587377
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A force plate based method for the calibration of force/torque sensors.
    Faber GS; Chang CC; Kingma I; Schepers HM; Herber S; Veltink PH; Dennerlein JT
    J Biomech; 2012 Apr; 45(7):1332-8. PubMed ID: 22444348
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Accuracy and repeatability of an inertial measurement unit system for field-based occupational studies.
    Schall MC; Fethke NB; Chen H; Oyama S; Douphrate DI
    Ergonomics; 2016 Apr; 59(4):591-602. PubMed ID: 26256753
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Body center of mass trajectory and mechanical energy using inertial sensors: a feasible stride?
    Pavei G; Salis F; Cereatti A; Bergamini E
    Gait Posture; 2020 Jul; 80():199-205. PubMed ID: 32526617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Markerless motion capture provides accurate predictions of ground reaction forces across a range of movement tasks.
    Lichtwark GA; Schuster RW; Kelly LA; Trost SG; Bialkowski A
    J Biomech; 2024 Mar; 166():112051. PubMed ID: 38503062
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A simple instrumented insole algorithm to estimate plantar flexion moments.
    Hullfish TJ; Baxter JR
    Gait Posture; 2020 Jun; 79():92-95. PubMed ID: 32388057
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Measuring 3D Hand and Finger Kinematics-A Comparison between Inertial Sensing and an Opto-Electronic Marker System.
    van den Noort JC; Kortier HG; van Beek N; Veeger DH; Veltink PH
    PLoS One; 2016; 11(11):e0164889. PubMed ID: 27812139
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Step-to-Step Kinematic Validation between an Inertial Measurement Unit (IMU) 3D System, a Combined Laser+IMU System and Force Plates during a 50 M Sprint in a Cohort of Sprinters.
    van den Tillaar R; Nagahara R; Gleadhill S; Jiménez-Reyes P
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640882
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Artificial neural networks to predict 3D spinal posture in reaching and lifting activities; Applications in biomechanical models.
    Gholipour A; Arjmand N
    J Biomech; 2016 Sep; 49(13):2946-2952. PubMed ID: 27452877
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Load-embedded inertial measurement unit reveals lifting performance.
    Tammana A; McKay C; Cain SM; Davidson SP; Vitali RV; Ojeda L; Stirling L; Perkins NC
    Appl Ergon; 2018 Jul; 70():68-76. PubMed ID: 29866328
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic Joint Motions in Occupational Environments as Indicators of Potential Musculoskeletal Injury Risk.
    Dufour JS; Aurand AM; Weston EB; Haritos CN; Souchereau RA; Marras WS
    J Appl Biomech; 2021 Jun; 37(3):196-203. PubMed ID: 33690164
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of IMU location on estimation of vertical ground reaction force during jumping.
    Kerns JA; Zwart AS; Perez PS; Gurchiek RD; McBride JM
    Front Bioeng Biotechnol; 2023; 11():1112866. PubMed ID: 37020514
    [No Abstract]   [Full Text] [Related]  

  • 54. Classification and characterization of postural transitions using instrumented shoes.
    Moufawad El Achkar C; Lenbole-Hoskovec C; Paraschiv-Ionescu A; Major K; Büla C; Aminian K
    Med Biol Eng Comput; 2018 Aug; 56(8):1403-1412. PubMed ID: 29327335
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of external loading on lumbar extension moment during squat lifting.
    Vahdat I; Rostami M; Tabatabai Ghomsheh F; Khorramymehr S; Tanbakoosaz A
    Int J Occup Med Environ Health; 2017 Jun; 30(4):665-679. PubMed ID: 28584310
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of ship motion on spinal loading during manual lifting.
    Faber GS; Kingma I; Delleman NJ; van Dieën JH
    Ergonomics; 2008 Sep; 51(9):1426-40. PubMed ID: 18802823
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New method to evaluate three-dimensional push-off angle during short-track speed skating using wearable inertial measurement unit sensors.
    Kim K; Kim JS; Purevsuren T; Khuyagbaatar B; Lee S; Kim YH
    Proc Inst Mech Eng H; 2019 Apr; 233(4):476-480. PubMed ID: 30773989
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wearable Sensor Network for Biomechanical Overload Assessment in Manual Material Handling.
    Giannini P; Bassani G; Avizzano CA; Filippeschi A
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32664523
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimation of lumbar spinal loading and trunk muscle forces during asymmetric lifting tasks: application of whole-body musculoskeletal modelling in OpenSim.
    Kim HK; Zhang Y
    Ergonomics; 2017 Apr; 60(4):563-576. PubMed ID: 27194401
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inertial measurement unit-based motion capture to replace camera-based systems for assessing gait in healthy young adults: Proceed with caution.
    Rekant J; Rothenberger S; Chambers A
    Measur Sens; 2022 Oct; 23():. PubMed ID: 36506853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.