These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 29158113)
1. Contribution of M Saygı Bacanak M; Aydın B; Cabadak H; Nurten A; Gören MZ; Enginar N Behav Brain Res; 2019 May; 364():423-430. PubMed ID: 29158113 [TBL] [Abstract][Full Text] [Related]
2. M1 and m2 muscarinic receptor subtypes regulate antidepressant-like effects of the rapidly acting antidepressant scopolamine. Witkin JM; Overshiner C; Li X; Catlow JT; Wishart GN; Schober DA; Heinz BA; Nikolayev A; Tolstikov VV; Anderson WH; Higgs RE; Kuo MS; Felder CC J Pharmacol Exp Ther; 2014 Nov; 351(2):448-56. PubMed ID: 25187432 [TBL] [Abstract][Full Text] [Related]
3. Scopolamine-induced convulsions in fasted mice after food intake: determination of blood glucose levels, [3H]glutamate binding kinetics and antidopaminergic drug effects. Enginar N; Yamantürk P; Nurten A; Nurten R; Koyuncuoğlu H Neuropharmacology; 2003 Feb; 44(2):199-205. PubMed ID: 12623218 [TBL] [Abstract][Full Text] [Related]
4. The role of solid food intake in antimuscarinic-induced convulsions in fasted mice. Nurten A; Ozerman B; Ozen I; Kara I Epilepsy Behav; 2009 Jun; 15(2):142-5. PubMed ID: 19318134 [TBL] [Abstract][Full Text] [Related]
5. The scopolamine-induced impairment of spatial cognition parallels the acetylcholine release in the ventral hippocampus in rats. Mishima K; Iwasaki K; Tsukikawa H; Matsumoto Y; Egashira N; Abe K; Egawa T; Fujiwara M Jpn J Pharmacol; 2000 Oct; 84(2):163-73. PubMed ID: 11128039 [TBL] [Abstract][Full Text] [Related]
6. Scopolamine-induced convulsions in fasted mice after food intake: effects of glucose intake, antimuscarinic activity and anticonvulsant drugs. Enginar N; Nurten A; Celik PY; Açikmeşe B Neuropharmacology; 2005 Sep; 49(3):293-9. PubMed ID: 15919102 [TBL] [Abstract][Full Text] [Related]
7. Effects of muscarinic receptor antagonists on cocaine discrimination in wild-type mice and in muscarinic receptor M Joseph L; Thomsen M Behav Brain Res; 2017 Jun; 329():75-83. PubMed ID: 28442355 [TBL] [Abstract][Full Text] [Related]
8. The evaluation of antimuscarinic-induced convulsions in fasted rats after food intake. Nurten A; Enginar N Epilepsy Res; 2006 Dec; 72(2-3):171-7. PubMed ID: 16962289 [TBL] [Abstract][Full Text] [Related]
9. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys. Wu W; Saunders RC; Mishkin M; Turchi J Neurobiol Learn Mem; 2012 Jul; 98(1):41-6. PubMed ID: 22561485 [TBL] [Abstract][Full Text] [Related]
10. Scopolamine-induced convulsions in fasted mice after food intake: the effect of duration of food deprivation. Enginar N; Nurten A; Ozünal ZG; Zengin A Epilepsia; 2009 Jan; 50(1):143-6. PubMed ID: 18801035 [TBL] [Abstract][Full Text] [Related]
11. Electroencephalographic characterization of scopolamine-induced convulsions in fasted mice after food intake. Nurten A; Ozen I; Karamursel S; Kara I Seizure; 2006 Oct; 15(7):509-19. PubMed ID: 16890459 [TBL] [Abstract][Full Text] [Related]
12. Methoctramine moderately improves memory but pirenzepine disrupts performance in delayed non-matching to position test. Aura J; Sirviö J; Riekkinen P Eur J Pharmacol; 1997 Aug; 333(2-3):129-34. PubMed ID: 9314025 [TBL] [Abstract][Full Text] [Related]
13. Muscarinic cholinergic receptor subtypes in the hippocampus of aged rats. Tayebati SK; Amenta F; El-Assouad D; Zaccheo D Mech Ageing Dev; 2002 Mar; 123(5):521-8. PubMed ID: 11796137 [TBL] [Abstract][Full Text] [Related]
14. Activation of cerebral function by CS-932, a functionally selective M1 partial agonist: neurochemical characterization and pharmacological studies. Iwata N; Kozuka M; Hara T; Kanek T; Tonohiro T; Sugimoto M; Niitsu Y; Kondo Y; Yamamoto T; Sakai J; Nagano M Jpn J Pharmacol; 2000 Nov; 84(3):266-80. PubMed ID: 11138727 [TBL] [Abstract][Full Text] [Related]
15. Antimuscarinic-induced convulsions in fasted mice after food intake: No evidence of spontaneous seizures, behavioral changes or neuronal damage. Enginar N; Nurten A; Türkmen AZ; Gündoğan Gİ; Özünal ZG Acta Neurobiol Exp (Wars); 2017; 77(4):373-381. PubMed ID: 29369302 [TBL] [Abstract][Full Text] [Related]
16. Expression of muscarinic acetylcholine receptors (M1-, M2-, M3- and M4-type) in the neuromuscular junction of the newborn and adult rat. Garcia N; Santafé MM; Salon I; Lanuza MA; Tomàs J Histol Histopathol; 2005 Jul; 20(3):733-43. PubMed ID: 15944922 [TBL] [Abstract][Full Text] [Related]
17. Central muscarinic and LPBN mechanisms on sodium intake. Anesio A; Barbosa SP; De Luca LA; de Paula PM; Colombari DSA; Colombari E; Andrade CAF; Menani JV Brain Res Bull; 2019 Jan; 144():14-20. PubMed ID: 30391542 [TBL] [Abstract][Full Text] [Related]
18. Comparative behavioral and neurochemical activities of cholinergic antagonists in rats. Bymaster FP; Heath I; Hendrix JC; Shannon HE J Pharmacol Exp Ther; 1993 Oct; 267(1):16-24. PubMed ID: 7901390 [TBL] [Abstract][Full Text] [Related]
19. Distinct kinetic binding properties of N-[3H]-methylscopolamine afford differential labeling and localization of M1, M2, and M3 muscarinic receptor subtypes in primate brain. Flynn DD; Mash DC Synapse; 1993 Aug; 14(4):283-96. PubMed ID: 8248852 [TBL] [Abstract][Full Text] [Related]
20. Vitamin E can compensate the density of M1 receptors in the hippocampus of scopolamine-treated rats. Sayyahi A; Jahanshahi M; Amini H; Sepehri H Folia Neuropathol; 2018; 56(3):215-228. PubMed ID: 30509043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]