BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 29158260)

  • 1. The actin-organizing formin protein Fhod3 is required for postnatal development and functional maintenance of the adult heart in mice.
    Ushijima T; Fujimoto N; Matsuyama S; Kan-O M; Kiyonari H; Shioi G; Kage Y; Yamasaki S; Takeya R; Sumimoto H
    J Biol Chem; 2018 Jan; 293(1):148-162. PubMed ID: 29158260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and subcellular localization of mammalian formin Fhod3 in the embryonic and adult heart.
    Kan-o M; Takeya R; Taniguchi K; Tanoue Y; Tominaga R; Sumimoto H
    PLoS One; 2012; 7(4):e34765. PubMed ID: 22509354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic Expression of the Formin Protein Fhod3 Selectively in the Embryonic Heart: Role of Actin-Binding Activity of Fhod3 and Its Sarcomeric Localization during Myofibrillogenesis.
    Fujimoto N; Kan-O M; Ushijima T; Kage Y; Tominaga R; Sumimoto H; Takeya R
    PLoS One; 2016; 11(2):e0148472. PubMed ID: 26848968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammalian formin fhod3 regulates actin assembly and sarcomere organization in striated muscles.
    Taniguchi K; Takeya R; Suetsugu S; Kan-O M; Narusawa M; Shiose A; Tominaga R; Sumimoto H
    J Biol Chem; 2009 Oct; 284(43):29873-81. PubMed ID: 19706596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two distinct phosphorylation events govern the function of muscle FHOD3.
    Iskratsch T; Reijntjes S; Dwyer J; Toselli P; Dégano IR; Dominguez I; Ehler E
    Cell Mol Life Sci; 2013 Mar; 70(5):893-908. PubMed ID: 23052206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian formin Fhod3 plays an essential role in cardiogenesis by organizing myofibrillogenesis.
    Kan-O M; Takeya R; Abe T; Kitajima N; Nishida M; Tominaga R; Kurose H; Sumimoto H
    Biol Open; 2012 Sep; 1(9):889-96. PubMed ID: 23213483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formin follows function: a muscle-specific isoform of FHOD3 is regulated by CK2 phosphorylation and promotes myofibril maintenance.
    Iskratsch T; Lange S; Dwyer J; Kho AL; dos Remedios C; Ehler E
    J Cell Biol; 2010 Dec; 191(6):1159-72. PubMed ID: 21149568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle-specific stress fibers give rise to sarcomeres in cardiomyocytes.
    Fenix AM; Neininger AC; Taneja N; Hyde K; Visetsouk MR; Garde RJ; Liu B; Nixon BR; Manalo AE; Becker JR; Crawley SW; Bader DM; Tyska MJ; Liu Q; Gutzman JH; Burnette DT
    Elife; 2018 Dec; 7():. PubMed ID: 30540249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between cardiac myosin-binding protein C and formin Fhod3.
    Matsuyama S; Kage Y; Fujimoto N; Ushijima T; Tsuruda T; Kitamura K; Shiose A; Asada Y; Sumimoto H; Takeya R
    Proc Natl Acad Sci U S A; 2018 May; 115(19):E4386-E4395. PubMed ID: 29686099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formin homology 2 domain-containing 3 (Fhod3) controls neural plate morphogenesis in mouse cranial neurulation by regulating multidirectional apical constriction.
    Sulistomo HW; Nemoto T; Yanagita T; Takeya R
    J Biol Chem; 2019 Feb; 294(8):2924-2934. PubMed ID: 30573686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fhod1, an actin-organizing formin family protein, is dispensable for cardiac development and function in mice.
    Sanematsu F; Kanai A; Ushijima T; Shiraishi A; Abe T; Kage Y; Sumimoto H; Takeya R
    Cytoskeleton (Hoboken); 2019 Feb; 76(2):219-229. PubMed ID: 31008549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical roles for multiple formins during cardiac myofibril development and repair.
    Rosado M; Barber CF; Berciu C; Feldman S; Birren SJ; Nicastro D; Goode BL
    Mol Biol Cell; 2014 Mar; 25(6):811-27. PubMed ID: 24430873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The formin FHOD1 in cardiomyocytes.
    Dwyer J; Pluess M; Iskratsch T; Dos Remedios CG; Ehler E
    Anat Rec (Hoboken); 2014 Sep; 297(9):1560-70. PubMed ID: 25125170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dilated cardiomyopathy-associated FHOD3 variant impairs the ability to induce activation of transcription factor serum response factor.
    Arimura T; Takeya R; Ishikawa T; Yamano T; Matsuo A; Tatsumi T; Nomura T; Sumimoto H; Kimura A
    Circ J; 2013; 77(12):2990-6. PubMed ID: 24088304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crucial Role of ROCK2-Mediated Phosphorylation and Upregulation of FHOD3 in the Pathogenesis of Angiotensin II-Induced Cardiac Hypertrophy.
    Zhou Q; Wei SS; Wang H; Wang Q; Li W; Li G; Hou JW; Chen XM; Chen J; Xu WP; Li YG; Wang YP
    Hypertension; 2017 Jun; 69(6):1070-1083. PubMed ID: 28438902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cardiomyocyte-specific Wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice.
    Yuan B; Wan P; Chu D; Nie J; Cao Y; Luo W; Lu S; Chen J; Yang Z
    Am J Pathol; 2014 Jul; 184(7):1967-80. PubMed ID: 24840128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DAAM1 and DAAM2 are co-required for myocardial maturation and sarcomere assembly.
    Ajima R; Bisson JA; Helt JC; Nakaya MA; Habas R; Tessarollo L; He X; Morrisey EE; Yamaguchi TP; Cohen ED
    Dev Biol; 2015 Dec; 408(1):126-39. PubMed ID: 26526197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different localizations and cellular behaviors of leiomodin and tropomodulin in mature cardiomyocyte sarcomeres.
    Skwarek-Maruszewska A; Boczkowska M; Zajac AL; Kremneva E; Svitkina T; Dominguez R; Lappalainen P
    Mol Biol Cell; 2010 Oct; 21(19):3352-61. PubMed ID: 20685966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formin Homology 2 Domain Containing 3 (FHOD3) Is a Genetic Basis for Hypertrophic Cardiomyopathy.
    Ochoa JP; Sabater-Molina M; García-Pinilla JM; Mogensen J; Restrepo-Córdoba A; Palomino-Doza J; Villacorta E; Martinez-Moreno M; Ramos-Maqueda J; Zorio E; Peña-Peña ML; García-Granja PE; Rodríguez-Palomares JF; Cárdenas-Reyes IJ; de la Torre-Carpente MM; Bautista-Pavés A; Akhtar MM; Cicerchia MN; Bilbao-Quesada R; Mogollón-Jimenez MV; Salazar-Mendiguchía J; Mesa Latorre JM; Arnaez B; Olavarri-Miguel I; Fuentes-Cañamero ME; Lamounier A; Pérez Ruiz JM; Climent-Payá V; Pérez-Sanchez I; Trujillo-Quintero JP; Lopes LR; Repáraz-Andrade A; Marín-Iglesias R; Rodriguez-Vilela A; Sandín-Fuentes M; Garrote JA; Cortel-Fuster A; Lopez-Garrido M; Fontalba-Romero A; Ripoll-Vera T; Llano-Rivas I; Fernandez-Fernandez X; Isidoro-García M; Garcia-Giustiniani D; Barriales-Villa R; Ortiz-Genga M; García-Pavía P; Elliott PM; Gimeno JR; Monserrat L
    J Am Coll Cardiol; 2018 Nov; 72(20):2457-2467. PubMed ID: 30442288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic regulation of sarcomeric actin filaments in striated muscle.
    Ono S
    Cytoskeleton (Hoboken); 2010 Nov; 67(11):677-92. PubMed ID: 20737540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.