These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
374 related articles for article (PubMed ID: 29158403)
1. Beating the curse of dimension with accurate statistics for the Fokker-Planck equation in complex turbulent systems. Chen N; Majda AJ Proc Natl Acad Sci U S A; 2017 Dec; 114(49):12864-12869. PubMed ID: 29158403 [TBL] [Abstract][Full Text] [Related]
2. Conditional Gaussian Systems for Multiscale Nonlinear Stochastic Systems: Prediction, State Estimation and Uncertainty Quantification. Chen N; Majda AJ Entropy (Basel); 2018 Jul; 20(7):. PubMed ID: 33265599 [TBL] [Abstract][Full Text] [Related]
4. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? Grima R; Thomas P; Straube AV J Chem Phys; 2011 Aug; 135(8):084103. PubMed ID: 21895155 [TBL] [Abstract][Full Text] [Related]
5. Data driven adaptive Gaussian mixture model for solving Fokker-Planck equation. Sun W; Feng J; Su J; Liang Y Chaos; 2022 Mar; 32(3):033131. PubMed ID: 35364842 [TBL] [Abstract][Full Text] [Related]
6. Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems. Sapsis TP; Majda AJ Proc Natl Acad Sci U S A; 2013 Aug; 110(34):13705-10. PubMed ID: 23918398 [TBL] [Abstract][Full Text] [Related]
7. On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle transport. Börgers C; Larsen EW Med Phys; 1996 Oct; 23(10):1749-59. PubMed ID: 8946371 [TBL] [Abstract][Full Text] [Related]
8. Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system. Shiino M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056118. PubMed ID: 12786231 [TBL] [Abstract][Full Text] [Related]
9. Dynamical behavior of a nonlocal Fokker-Planck equation for a stochastic system with tempered stable noise. Lin L; Duan J; Wang X; Zhang Y Chaos; 2021 May; 31(5):051105. PubMed ID: 34240951 [TBL] [Abstract][Full Text] [Related]
10. Conceptual dynamical models for turbulence. Majda AJ; Lee Y Proc Natl Acad Sci U S A; 2014 May; 111(18):6548-53. PubMed ID: 24753605 [TBL] [Abstract][Full Text] [Related]
11. Interacting Particle Solutions of Fokker-Planck Equations Through Gradient-Log-Density Estimation. Maoutsa D; Reich S; Opper M Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286573 [TBL] [Abstract][Full Text] [Related]
12. Monte Carlo Simulation of Stochastic Differential Equation to Study Information Geometry. Thiruthummal AA; Kim EJ Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010777 [TBL] [Abstract][Full Text] [Related]
13. Time-dependent probability density function in cubic stochastic processes. Kim EJ; Hollerbach R Phys Rev E; 2016 Nov; 94(5-1):052118. PubMed ID: 27967083 [TBL] [Abstract][Full Text] [Related]
14. Conditional Lagrangian acceleration statistics in turbulent flows with Gaussian-distributed velocities. Aringazin AK Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036301. PubMed ID: 15524627 [TBL] [Abstract][Full Text] [Related]
15. Projection pursuit in high dimensions. Bickel PJ; Kur G; Nadler B Proc Natl Acad Sci U S A; 2018 Sep; 115(37):9151-9156. PubMed ID: 30150379 [TBL] [Abstract][Full Text] [Related]
16. Improved estimation of Fokker-Planck equations through optimization. Nawroth AP; Peinke J; Kleinhans D; Friedrich R Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056102. PubMed ID: 18233713 [TBL] [Abstract][Full Text] [Related]
17. Solving the Fokker-Planck kinetic equation on a lattice. Moroni D; Rotenberg B; Hansen JP; Succi S; Melchionna S Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066707. PubMed ID: 16907023 [TBL] [Abstract][Full Text] [Related]
18. Consequences of the H theorem from nonlinear Fokker-Planck equations. Schwämmle V; Nobre FD; Curado EM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041123. PubMed ID: 17994952 [TBL] [Abstract][Full Text] [Related]
19. Invariance principle and model reduction for the Fokker-Planck equation. Karlin IV Philos Trans A Math Phys Eng Sci; 2016 Nov; 374(2080):. PubMed ID: 27698039 [TBL] [Abstract][Full Text] [Related]
20. Neural network representation of the probability density function of diffusion processes. Uy WIT; Grigoriu MD Chaos; 2020 Sep; 30(9):093118. PubMed ID: 33003919 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]