These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 29158403)

  • 21. Fokker-Planck representations of non-Markov Langevin equations: application to delayed systems.
    Giuggioli L; Neu Z
    Philos Trans A Math Phys Eng Sci; 2019 Sep; 377(2153):20180131. PubMed ID: 31329064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stationary distribution and density function analysis of SVIS epidemic model with saturated incidence and vaccination under stochastic environments.
    Mahato P; Mahato SK; Das S; Karmakar P
    Theory Biosci; 2023 Jun; 142(2):181-198. PubMed ID: 37191878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Curl forces and the nonlinear Fokker-Planck equation.
    Wedemann RS; Plastino AR; Tsallis C
    Phys Rev E; 2016 Dec; 94(6-1):062105. PubMed ID: 28085349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Greedy Hypervolume Subset Selection in Low Dimensions.
    Guerreiro AP; Fonseca CM; Paquete L
    Evol Comput; 2016; 24(3):521-44. PubMed ID: 27303786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kantorovich-Rubinstein distance and approximation for non-local Fokker-Planck equations.
    Zhang A; Duan J
    Chaos; 2021 Nov; 31(11):111104. PubMed ID: 34881587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonlinear Fokker-Planck Equation Approach to Systems of Interacting Particles: Thermostatistical Features Related to the Range of the Interactions.
    Plastino AR; Wedemann RS
    Entropy (Basel); 2020 Jan; 22(2):. PubMed ID: 33285938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag.
    Plastino AR; Curado EMF; Nobre FD; Tsallis C
    Phys Rev E; 2018 Feb; 97(2-1):022120. PubMed ID: 29548132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fokker-Planck perspective on stochastic delay systems: exact solutions and data analysis of biological systems.
    Frank TD; Beek PJ; Friedrich R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021912. PubMed ID: 14525011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transition of fluctuations from Gaussian state to turbulent state.
    Gotoh T; Yang J
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2218):20210097. PubMed ID: 35034486
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Green function of the double-fractional Fokker-Planck equation: path integral and stochastic differential equations.
    Kleinert H; Zatloukal V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052106. PubMed ID: 24329213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. State-space-split method for some generalized Fokker-Planck-Kolmogorov equations in high dimensions.
    Er GK; Iu VP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):067701. PubMed ID: 23005249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relaxation of the distribution function tails for systems described by Fokker-Planck equations.
    Chavanis PH; Lemou M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061106. PubMed ID: 16485930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solutions of a class of non-Markovian Fokker-Planck equations.
    Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 1):041101. PubMed ID: 12443171
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short-time expansion of one-dimensional Fokker-Planck equations with heterogeneous diffusion.
    Dupont T; Giordano S; Cleri F; Blossey R
    Phys Rev E; 2024 Jun; 109(6-1):064106. PubMed ID: 39020937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting observed and hidden extreme events in complex nonlinear dynamical systems with partial observations and short training time series.
    Chen N; Majda AJ
    Chaos; 2020 Mar; 30(3):033101. PubMed ID: 32237755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The lattice Fokker-Planck equation for models of wealth distribution.
    Kaushal S; Ansumali S; Boghosian B; Johnson M
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190401. PubMed ID: 32564726
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hamiltonian chaos acts like a finite energy reservoir: accuracy of the Fokker-Planck approximation.
    Riegert A; Baba N; Gelfert K; Just W; Kantz H
    Phys Rev Lett; 2005 Feb; 94(5):054103. PubMed ID: 15783645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Counting process-based dimension reduction methods for censored outcomes.
    Sun Q; Zhu R; Wang T; Zeng D
    Biometrika; 2019 Mar; 106(1):181-196. PubMed ID: 30799878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Brane-world singularities and asymptotics of five-dimensional bulk fluids.
    Antoniadis I; Cotsakis S; Klaoudatou I
    Philos Trans A Math Phys Eng Sci; 2022 Aug; 380(2230):20210180. PubMed ID: 35785973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Weiss mean-field approximation for multicomponent stochastic spatially extended systems.
    Kurushina SE; Maximov VV; Romanovskii YM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022135. PubMed ID: 25215716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.