These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 29158409)

  • 1. Hydrophobicity of proteins and nanostructured solutes is governed by topographical and chemical context.
    Xi E; Venkateshwaran V; Li L; Rego N; Patel AJ; Garde S
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13345-13350. PubMed ID: 29158409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping hydrophobicity at the nanoscale: applications to heterogeneous surfaces and proteins.
    Acharya H; Vembanur S; Jamadagni SN; Garde S
    Faraday Discuss; 2010; 146():353-65; discussion 367-93, 395-401. PubMed ID: 21043432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobicity of proteins and interfaces: insights from density fluctuations.
    Jamadagni SN; Godawat R; Garde S
    Annu Rev Chem Biomol Eng; 2011; 2():147-71. PubMed ID: 22432614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural features of interfacial water predict the hydrophobicity of chemically heterogeneous surfaces.
    Dallin BC; Kelkar AS; Van Lehn RC
    Chem Sci; 2023 Feb; 14(5):1308-1319. PubMed ID: 36756335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient method to characterize the context-dependent hydrophobicity of proteins.
    Patel AJ; Garde S
    J Phys Chem B; 2014 Feb; 118(6):1564-73. PubMed ID: 24397378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Study of Water-Mediated Interactions between Hydrophilic and Hydrophobic Nanoscale Surfaces.
    Kopel Y; Giovambattista N
    J Phys Chem B; 2019 Dec; 123(50):10814-10824. PubMed ID: 31750656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying nonadditive contributions to the hydrophobicity of chemically heterogeneous surfaces via dual-loop active learning.
    Kelkar AS; Dallin BC; Van Lehn RC
    J Chem Phys; 2022 Jan; 156(2):024701. PubMed ID: 35032988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying hydrophobic protein patches to inform protein interaction interfaces.
    Rego NB; Xi E; Patel AJ
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33526682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sparse Sampling of Water Density Fluctuations in Interfacial Environments.
    Xi E; Remsing RC; Patel AJ
    J Chem Theory Comput; 2016 Feb; 12(2):706-13. PubMed ID: 26745023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of hydrophobin on different self-assembled monolayers: the role of the hydrophobic dipole and the electric dipole.
    Peng C; Liu J; Zhao D; Zhou J
    Langmuir; 2014 Sep; 30(38):11401-11. PubMed ID: 25185838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying water density fluctuations and compressibility of hydration shells of hydrophobic solutes and proteins.
    Sarupria S; Garde S
    Phys Rev Lett; 2009 Jul; 103(3):037803. PubMed ID: 19659321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water density fluctuations relevant to hydrophobic hydration are unaltered by attractions.
    Remsing RC; Patel AJ
    J Chem Phys; 2015 Jan; 142(2):024502. PubMed ID: 25591367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations.
    Godawat R; Jamadagni SN; Garde S
    Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15119-24. PubMed ID: 19706896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the influence of solute polarizability on the hydrophobic interaction.
    Bresme F; Wynveen A
    J Chem Phys; 2007 Jan; 126(4):044501. PubMed ID: 17286481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network.
    Zhu C; Gao Y; Li H; Meng S; Li L; Francisco JS; Zeng XC
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):12946-12951. PubMed ID: 27803319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring hydrophobicity by THz absorption spectroscopy of solvated amino acids.
    Niehues G; Heyden M; Schmidt DA; Havenith M
    Faraday Discuss; 2011; 150():193-207; discussion 257-92. PubMed ID: 22457949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How hydrophobic hydration responds to solute size and attractions: Theory and simulations.
    Athawale MV; Jamadagni SN; Garde S
    J Chem Phys; 2009 Sep; 131(11):115102. PubMed ID: 19778151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling carbon-nanotube-phospholipid solubility by curvature-dependent self-assembly.
    Määttä J; Vierros S; Sammalkorpi M
    J Phys Chem B; 2015 Mar; 119(10):4020-32. PubMed ID: 25685937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscopic wetting of self-assembled monolayers with different surfaces: a combined molecular dynamics and quantum mechanics study.
    Xu Z; Song K; Yuan SL; Liu CB
    Langmuir; 2011 Jul; 27(14):8611-20. PubMed ID: 21639099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface topography dependence of biomolecular hydrophobic hydration.
    Cheng YK; Rossky PJ
    Nature; 1998 Apr; 392(6677):696-9. PubMed ID: 9565030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.