BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 29158440)

  • 21. Long-Range Chromosome Interactions Mediated by Cohesin Shape Circadian Gene Expression.
    Xu Y; Guo W; Li P; Zhang Y; Zhao M; Fan Z; Zhao Z; Yan J
    PLoS Genet; 2016 May; 12(5):e1005992. PubMed ID: 27135601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specific Contributions of Cohesin-SA1 and Cohesin-SA2 to TADs and Polycomb Domains in Embryonic Stem Cells.
    Cuadrado A; Giménez-Llorente D; Kojic A; Rodríguez-Corsino M; Cuartero Y; Martín-Serrano G; Gómez-López G; Marti-Renom MA; Losada A
    Cell Rep; 2019 Jun; 27(12):3500-3510.e4. PubMed ID: 31216471
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zebrafish as a Model to Study Cohesin and Cohesinopathies.
    Muto A; Schilling TF
    Methods Mol Biol; 2017; 1515():177-196. PubMed ID: 27797080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ChIPr: accurate prediction of cohesin-mediated 3D genome organization from 2D chromatin features.
    Abbas A; Chandratre K; Gao Y; Yuan J; Zhang MQ; Mani RS
    Genome Biol; 2024 Jan; 25(1):15. PubMed ID: 38217027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of zygotic genome activation and DNA damage checkpoint acquisition at the mid-blastula transition.
    Zhang M; Kothari P; Mullins M; Lampson MA
    Cell Cycle; 2014; 13(24):3828-38. PubMed ID: 25558827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interplay between CTCF boundaries and a super enhancer controls cohesin extrusion trajectories and gene expression.
    Vos ESM; Valdes-Quezada C; Huang Y; Allahyar A; Verstegen MJAM; Felder AK; van der Vegt F; Uijttewaal ECH; Krijger PHL; de Laat W
    Mol Cell; 2021 Aug; 81(15):3082-3095.e6. PubMed ID: 34197738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. m
    Zhao BS; Wang X; Beadell AV; Lu Z; Shi H; Kuuspalu A; Ho RK; He C
    Nature; 2017 Feb; 542(7642):475-478. PubMed ID: 28192787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinct roles of cohesin-SA1 and cohesin-SA2 in 3D chromosome organization.
    Kojic A; Cuadrado A; De Koninck M; Giménez-Llorente D; Rodríguez-Corsino M; Gómez-López G; Le Dily F; Marti-Renom MA; Losada A
    Nat Struct Mol Biol; 2018 Jun; 25(6):496-504. PubMed ID: 29867216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of cohesin and condensin genes during zebrafish development supports a non-proliferative role for cohesin.
    Mönnich M; Banks S; Eccles M; Dickinson E; Horsfield J
    Gene Expr Patterns; 2009 Dec; 9(8):586-94. PubMed ID: 19723591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic analysis of cancer drivers reveals cohesin and CTCF as suppressors of PD-L1.
    Oreskovic E; Wheeler EC; Mengwasser KE; Fujimura E; Martin TD; Tothova Z; Elledge SJ
    Proc Natl Acad Sci U S A; 2022 Feb; 119(7):. PubMed ID: 35149558
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maternal Ybx1 safeguards zebrafish oocyte maturation and maternal-to-zygotic transition by repressing global translation.
    Sun J; Yan L; Shen W; Meng A
    Development; 2018 Oct; 145(19):. PubMed ID: 30135188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The emergence of genome architecture and zygotic genome activation.
    Vallot A; Tachibana K
    Curr Opin Cell Biol; 2020 Jun; 64():50-57. PubMed ID: 32220807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brd4 and P300 Confer Transcriptional Competency during Zygotic Genome Activation.
    Chan SH; Tang Y; Miao L; Darwich-Codore H; Vejnar CE; Beaudoin JD; Musaev D; Fernandez JP; Benitez MDJ; Bazzini AA; Moreno-Mateos MA; Giraldez AJ
    Dev Cell; 2019 Jun; 49(6):867-881.e8. PubMed ID: 31211993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential transcript isoform usage pre- and post-zygotic genome activation in zebrafish.
    Aanes H; Østrup O; Andersen IS; Moen LF; Mathavan S; Collas P; Alestrom P
    BMC Genomics; 2013 May; 14():331. PubMed ID: 23676078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA Supercoiling, Topoisomerases, and Cohesin: Partners in Regulating Chromatin Architecture?
    Björkegren C; Baranello L
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29547555
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleoporin 153 links nuclear pore complex to chromatin architecture by mediating CTCF and cohesin binding.
    Kadota S; Ou J; Shi Y; Lee JT; Sun J; Yildirim E
    Nat Commun; 2020 May; 11(1):2606. PubMed ID: 32451376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CTCF as a boundary factor for cohesin-mediated loop extrusion: evidence for a multi-step mechanism.
    Hansen AS
    Nucleus; 2020 Dec; 11(1):132-148. PubMed ID: 32631111
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CTCF and cohesin promote focal detachment of DNA from the nuclear lamina.
    van Schaik T; Liu NQ; Manzo SG; Peric-Hupkes D; de Wit E; van Steensel B
    Genome Biol; 2022 Sep; 23(1):185. PubMed ID: 36050765
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A tour of 3D genome with a focus on CTCF.
    Wang DC; Wang W; Zhang L; Wang X
    Semin Cell Dev Biol; 2019 Jun; 90():4-11. PubMed ID: 30031214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maternal RNF114-mediated target substrate degradation regulates zygotic genome activation in mouse embryos.
    Zhou S; Guo Y; Sun H; Liu L; Yao L; Liu C; He Y; Cao S; Zhou C; Li M; Cao Y; Wang C; Lu Q; Li W; Guo X; Huo R
    Development; 2021 Jul; 148(13):. PubMed ID: 34104941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.