BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29158483)

  • 1. Noninvasive liquid diet delivery of stable isotopes into mouse models for deep metabolic network tracing.
    Sun RC; Fan TW; Deng P; Higashi RM; Lane AN; Le AT; Scott TL; Sun Q; Warmoes MO; Yang Y
    Nat Commun; 2017 Nov; 8(1):1646. PubMed ID: 29158483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the metabolic phenotype of breast cancer cells by multiple tracer stable isotope resolved metabolomics.
    Lane AN; Tan J; Wang Y; Yan J; Higashi RM; Fan TW
    Metab Eng; 2017 Sep; 43(Pt B):125-136. PubMed ID: 28163219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes.
    Fan TW; Kucia M; Jankowski K; Higashi RM; Ratajczak J; Ratajczak MZ; Lane AN
    Mol Cancer; 2008 Oct; 7():79. PubMed ID: 18939998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloroformate derivatization for tracing the fate of Amino acids in cells and tissues by multiple stable isotope resolved metabolomics (mSIRM).
    Yang Y; Fan TW; Lane AN; Higashi RM
    Anal Chim Acta; 2017 Jul; 976():63-73. PubMed ID: 28576319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM).
    Fan TW; Lane AN; Higashi RM; Farag MA; Gao H; Bousamra M; Miller DM
    Mol Cancer; 2009 Jun; 8():41. PubMed ID: 19558692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of lactate from various metabolic pathways and quantification issues of lactate isotopologues and isotopmers.
    Zhang W; Guo C; Jiang K; Ying M; Hu X
    Sci Rep; 2017 Aug; 7(1):8489. PubMed ID: 28814730
    [No Abstract]   [Full Text] [Related]  

  • 7. Metabolic profiling by 13C-NMR spectroscopy: [1,2-13C2]glucose reveals a heterogeneous metabolism in human leukemia T cells.
    Miccheli A; Tomassini A; Puccetti C; Valerio M; Peluso G; Tuccillo F; Calvani M; Manetti C; Conti F
    Biochimie; 2006 May; 88(5):437-48. PubMed ID: 16359766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous tracers and a unified model of positional and mass isotopomers for quantification of metabolic flux in liver.
    Deja S; Fu X; Fletcher JA; Kucejova B; Browning JD; Young JD; Burgess SC
    Metab Eng; 2020 May; 59():1-14. PubMed ID: 31891762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycolysis and the pentose phosphate pathway are differentially associated with the dichotomous regulation of glioblastoma cell migration versus proliferation.
    Kathagen-Buhmann A; Schulte A; Weller J; Holz M; Herold-Mende C; Glass R; Lamszus K
    Neuro Oncol; 2016 Sep; 18(9):1219-29. PubMed ID: 26917237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic strategy of boar spermatozoa revealed by a metabolomic characterization.
    Marin S; Chiang K; Bassilian S; Lee WN; Boros LG; Fernández-Novell JM; Centelles JJ; Medrano A; Rodriguez-Gil JE; Cascante M
    FEBS Lett; 2003 Nov; 554(3):342-6. PubMed ID: 14623091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated (2)H and (13)C NMR study of gluconeogenesis and TCA cycle flux in humans.
    Jones JG; Solomon MA; Cole SM; Sherry AD; Malloy CR
    Am J Physiol Endocrinol Metab; 2001 Oct; 281(4):E848-56. PubMed ID: 11551863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid chromatography tandem mass spectrometry for measuring ¹³C-labeling in intermediates of the glycolysis and pentose phosphate pathway.
    Cocuron JC; Alonso AP
    Methods Mol Biol; 2014; 1090():131-42. PubMed ID: 24222414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the pentose phosphate pathway using [2, 3-
    Lee MH; Malloy CR; Corbin IR; Li J; Jin ES
    NMR Biomed; 2019 Jun; 32(6):e4096. PubMed ID: 30924572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidation of the role of fructose 2,6-bisphosphate in the regulation of glucose fluxes in mice using in vivo (13)C NMR measurements of hepatic carbohydrate metabolism.
    Choi IY; Wu C; Okar DA; Lange AJ; Gruetter R
    Eur J Biochem; 2002 Sep; 269(18):4418-26. PubMed ID: 12230553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic profiling of the glucose metabolic network in fasted rat hepatocytes using [1,2-13C2]glucose.
    Marin S; Lee WN; Bassilian S; Lim S; Boros LG; Centelles JJ; FernAndez-Novell JM; Guinovart JJ; Cascante M
    Biochem J; 2004 Jul; 381(Pt 1):287-94. PubMed ID: 15032751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. (13)C metabolic flux analysis in neurons utilizing a model that accounts for hexose phosphate recycling within the pentose phosphate pathway.
    Gebril HM; Avula B; Wang YH; Khan IA; Jekabsons MB
    Neurochem Int; 2016 Feb; 93():26-39. PubMed ID: 26723542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose.
    Rodrigues TB; Serrao EM; Kennedy BW; Hu DE; Kettunen MI; Brindle KM
    Nat Med; 2014 Jan; 20(1):93-7. PubMed ID: 24317119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrahigh resolution MS
    Fan TW; Sun Q; Higashi RM
    J Biol Chem; 2022 Dec; 298(12):102586. PubMed ID: 36223837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Futile cycling of lactate through the plasma membrane of C6 glioma cells as detected by (13C, 2H) NMR.
    Rodrigues TB; Gray HL; Benito M; Garrido S; Sierra A; Geraldes CF; Ballesteros P; Cerdán S
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):119-27. PubMed ID: 15562438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the central carbon metabolism of Sorangium cellulosum: metabolic network reconstruction and quantification of pathway fluxes.
    Bolten CJ; Heinzle E; Müller R; Wittmann C
    J Microbiol Biotechnol; 2009 Jan; 19(1):23-36. PubMed ID: 19190405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.