BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 29159042)

  • 1. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI.
    Moeskops P; de Bresser J; Kuijf HJ; Mendrik AM; Biessels GJ; Pluim JPW; Išgum I
    Neuroimage Clin; 2018; 17():251-262. PubMed ID: 29159042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both Multiple Sclerosis and elderly subjects.
    Tran P; Thoprakarn U; Gourieux E; Dos Santos CL; Cavedo E; Guizard N; Cotton F; Krolak-Salmon P; Delmaire C; Heidelberg D; Pyatigorskaya N; Ströer S; Dormont D; Martini JB; Chupin M;
    Neuroimage Clin; 2022; 33():102940. PubMed ID: 35051744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UBO Detector - A cluster-based, fully automated pipeline for extracting white matter hyperintensities.
    Jiang J; Liu T; Zhu W; Koncz R; Liu H; Lee T; Sachdev PS; Wen W
    Neuroimage; 2018 Jul; 174():539-549. PubMed ID: 29578029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology.
    Rachmadi MF; Valdés-Hernández MDC; Agan MLF; Di Perri C; Komura T;
    Comput Med Imaging Graph; 2018 Jun; 66():28-43. PubMed ID: 29523002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic quantification of white matter hyperintensities on T2-weighted fluid attenuated inversion recovery magnetic resonance imaging.
    Igwe KC; Lao PJ; Vorburger RS; Banerjee A; Rivera A; Chesebro A; Laing K; Manly JJ; Brickman AM
    Magn Reson Imaging; 2022 Jan; 85():71-79. PubMed ID: 34662699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks.
    Guerrero R; Qin C; Oktay O; Bowles C; Chen L; Joules R; Wolz R; Valdés-Hernández MC; Dickie DA; Wardlaw J; Rueckert D
    Neuroimage Clin; 2018; 17():918-934. PubMed ID: 29527496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limited One-time Sampling Irregularity Map (LOTS-IM) for Automatic Unsupervised Assessment of White Matter Hyperintensities and Multiple Sclerosis Lesions in Structural Brain Magnetic Resonance Images.
    Rachmadi MF; Valdés-Hernández MDC; Li H; Guerrero R; Meijboom R; Wiseman S; Waldman A; Zhang J; Rueckert D; Wardlaw J; Komura T
    Comput Med Imaging Graph; 2020 Jan; 79():101685. PubMed ID: 31846826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A joint ventricle and WMH segmentation from MRI for evaluation of healthy and pathological changes in the aging brain.
    Atlason HE; Love A; Robertsson V; Blitz AM; Sigurdsson S; Gudnason V; Ellingsen LM
    PLoS One; 2022; 17(9):e0274212. PubMed ID: 36067136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Automatic Segmentation of White Matter Hyperintensities in MRI Based on Multilevel Lesion Features.
    Rincón M; Díaz-López E; Selnes P; Vegge K; Altmann M; Fladby T; Bjørnerud A
    Neuroinformatics; 2017 Jul; 15(3):231-245. PubMed ID: 28378263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metric to quantify white matter damage on brain magnetic resonance images.
    Valdés Hernández MDC; Chappell FM; Muñoz Maniega S; Dickie DA; Royle NA; Morris Z; Anblagan D; Sakka E; Armitage PA; Bastin ME; Deary IJ; Wardlaw JM
    Neuroradiology; 2017 Oct; 59(10):951-962. PubMed ID: 28815362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reproducible segmentation of white matter hyperintensities using a new statistical definition.
    Damangir S; Westman E; Simmons A; Vrenken H; Wahlund LO; Spulber G
    MAGMA; 2017 Jun; 30(3):227-237. PubMed ID: 27943055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities.
    Griffanti L; Zamboni G; Khan A; Li L; Bonifacio G; Sundaresan V; Schulz UG; Kuker W; Battaglini M; Rothwell PM; Jenkinson M
    Neuroimage; 2016 Nov; 141():191-205. PubMed ID: 27402600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic segmentation and quantitative analysis of white matter hyperintensities on FLAIR images using trimmed-likelihood estimator.
    Wang R; Li C; Wang J; Wei X; Li Y; Hui C; Zhu Y; Zhang S
    Acad Radiol; 2014 Dec; 21(12):1512-23. PubMed ID: 25176451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. End-to-end volumetric segmentation of white matter hyperintensities using deep learning.
    Farkhani S; Demnitz N; Boraxbekk CJ; Lundell H; Siebner HR; Petersen ET; Madsen KH
    Comput Methods Programs Biomed; 2024 Mar; 245():108008. PubMed ID: 38290291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SegAE: Unsupervised white matter lesion segmentation from brain MRIs using a CNN autoencoder.
    Atlason HE; Love A; Sigurdsson S; Gudnason V; Ellingsen LM
    Neuroimage Clin; 2019; 24():102085. PubMed ID: 31835288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic segmentation of white matter hyperintensities in T2-FLAIR with AQUA: A comparative validation study against conventional methods.
    Lee S; Rieu Z; Kim RE; Lee M; Yen K; Yong J; Kim D
    Brain Res Bull; 2023 Dec; 205():110825. PubMed ID: 38000477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of white matter disease on the accuracy of automated segmentation.
    Karim HT; Andreescu C; MacCloud RL; Butters MA; Reynolds CF; Aizenstein HJ; Tudorascu DL
    Psychiatry Res Neuroimaging; 2016 Jul; 253():7-14. PubMed ID: 27254085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge.
    Kuijf HJ; Biesbroek JM; De Bresser J; Heinen R; Andermatt S; Bento M; Berseth M; Belyaev M; Cardoso MJ; Casamitjana A; Collins DL; Dadar M; Georgiou A; Ghafoorian M; Jin D; Khademi A; Knight J; Li H; Llado X; Luna M; Mahmood Q; McKinley R; Mehrtash A; Ourselin S; Park BY; Park H; Park SH; Pezold S; Puybareau E; Rittner L; Sudre CH; Valverde S; Vilaplana V; Wiest R; Xu Y; Xu Z; Zeng G; Zhang J; Zheng G; Chen C; van der Flier W; Barkhof F; Viergever MA; Biessels GJ
    IEEE Trans Med Imaging; 2019 Nov; 38(11):2556-2568. PubMed ID: 30908194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic brain tissue segmentation in fetal MRI using convolutional neural networks.
    Khalili N; Lessmann N; Turk E; Claessens N; Heus R; Kolk T; Viergever MA; Benders MJNL; Išgum I
    Magn Reson Imaging; 2019 Dec; 64():77-89. PubMed ID: 31181246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts - The MRI-GENIE study.
    Schirmer MD; Dalca AV; Sridharan R; Giese AK; Donahue KL; Nardin MJ; Mocking SJT; McIntosh EC; Frid P; Wasselius J; Cole JW; Holmegaard L; Jern C; Jimenez-Conde J; Lemmens R; Lindgren AG; Meschia JF; Roquer J; Rundek T; Sacco RL; Schmidt R; Sharma P; Slowik A; Thijs V; Woo D; Vagal A; Xu H; Kittner SJ; McArdle PF; Mitchell BD; Rosand J; Worrall BB; Wu O; Golland P; Rost NS;
    Neuroimage Clin; 2019; 23():101884. PubMed ID: 31200151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.