BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 29159042)

  • 21. Validation and Optimization of BIANCA for the Segmentation of Extensive White Matter Hyperintensities.
    Ling Y; Jouvent E; Cousyn L; Chabriat H; De Guio F
    Neuroinformatics; 2018 Apr; 16(2):269-281. PubMed ID: 29594711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images.
    Li H; Jiang G; Zhang J; Wang R; Wang Z; Zheng WS; Menze B
    Neuroimage; 2018 Dec; 183():650-665. PubMed ID: 30125711
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning.
    Narayana PA; Coronado I; Sujit SJ; Sun X; Wolinsky JS; Gabr RE
    Magn Reson Imaging; 2020 Jan; 65():8-14. PubMed ID: 31670238
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images.
    Sundaresan V; Zamboni G; Rothwell PM; Jenkinson M; Griffanti L
    Med Image Anal; 2021 Oct; 73():102184. PubMed ID: 34325148
    [TBL] [Abstract][Full Text] [Related]  

  • 25. White matter hyperintensities and their relationship to cognition: Effects of segmentation algorithm.
    Tubi MA; Feingold FW; Kothapalli D; Hare ET; King KS; Thompson PM; Braskie MN;
    Neuroimage; 2020 Feb; 206():116327. PubMed ID: 31682983
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-step deep neural network for segmentation of deep white matter hyperintensities in migraineurs.
    Hong J; Park BY; Lee MJ; Chung CS; Cha J; Park H
    Comput Methods Programs Biomed; 2020 Jan; 183():105065. PubMed ID: 31522090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Semisupervised white matter hyperintensities segmentation on MRI.
    Huang F; Xia P; Vardhanabhuti V; Hui SK; Lau KK; Ka-Fung Mak H; Cao P
    Hum Brain Mapp; 2023 Mar; 44(4):1344-1358. PubMed ID: 36214210
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep learning from MRI-derived labels enables automatic brain tissue classification on human brain CT.
    Srikrishna M; Pereira JB; Heckemann RA; Volpe G; van Westen D; Zettergren A; Kern S; Wahlund LO; Westman E; Skoog I; Schöll M
    Neuroimage; 2021 Dec; 244():118606. PubMed ID: 34571160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Segmenting white matter hyperintensities on isotropic three-dimensional Fluid Attenuated Inversion Recovery magnetic resonance images: Assessing deep learning tools on a Norwegian imaging database.
    Røvang MS; Selnes P; MacIntosh BJ; Rasmus Groote I; Pålhaugen L; Sudre C; Fladby T; Bjørnerud A
    PLoS One; 2023; 18(8):e0285683. PubMed ID: 37616243
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brain segmentation in patients with perinatal arterial ischemic stroke.
    Zoetmulder R; Baak L; Khalili N; Marquering HA; Wagenaar N; Benders M; van der Aa NE; Išgum I
    Neuroimage Clin; 2023; 38():103381. PubMed ID: 36965456
    [TBL] [Abstract][Full Text] [Related]  

  • 31. White matter hyperintensities segmentation: a new semi-automated method.
    Iorio M; Spalletta G; Chiapponi C; Luccichenti G; Cacciari C; Orfei MD; Caltagirone C; Piras F
    Front Aging Neurosci; 2013; 5():76. PubMed ID: 24339815
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep learning-based grading of white matter hyperintensities enables identification of potential markers in multi-sequence MRI data.
    Mu S; Lu W; Yu G; Zheng L; Qiu J
    Comput Methods Programs Biomed; 2024 Jan; 243():107904. PubMed ID: 37924768
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic Detection of White Matter Hyperintensities in Healthy Aging and Pathology Using Magnetic Resonance Imaging: A Review.
    Caligiuri ME; Perrotta P; Augimeri A; Rocca F; Quattrone A; Cherubini A
    Neuroinformatics; 2015 Jul; 13(3):261-76. PubMed ID: 25649877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance of three freely available methods for extracting white matter hyperintensities: FreeSurfer, UBO Detector, and BIANCA.
    Hotz I; Deschwanden PF; Liem F; Mérillat S; Malagurski B; Kollias S; Jäncke L
    Hum Brain Mapp; 2022 Apr; 43(5):1481-1500. PubMed ID: 34873789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automatic segmentation of white matter hyperintensities from brain magnetic resonance images in the era of deep learning and big data - A systematic review.
    Balakrishnan R; Valdés Hernández MDC; Farrall AJ
    Comput Med Imaging Graph; 2021 Mar; 88():101867. PubMed ID: 33508567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images.
    Jain S; Sima DM; Ribbens A; Cambron M; Maertens A; Van Hecke W; De Mey J; Barkhof F; Steenwijk MD; Daams M; Maes F; Van Huffel S; Vrenken H; Smeets D
    Neuroimage Clin; 2015; 8():367-75. PubMed ID: 26106562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validation of an automatic tool for the rapid measurement of brain atrophy and white matter hyperintensity: QyScore®.
    Cavedo E; Tran P; Thoprakarn U; Martini JB; Movschin A; Delmaire C; Gariel F; Heidelberg D; Pyatigorskaya N; Ströer S; Krolak-Salmon P; Cotton F; Dos Santos CL; Dormont D
    Eur Radiol; 2022 May; 32(5):2949-2961. PubMed ID: 34973104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computer-aided evaluation method of white matter hyperintensities related to subcortical vascular dementia based on magnetic resonance imaging.
    Kawata Y; Arimura H; Yamashita Y; Magome T; Ohki M; Toyofuku F; Higashida Y; Tsuchiya K
    Comput Med Imaging Graph; 2010 Jul; 34(5):370-6. PubMed ID: 20116974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early detection of white matter hyperintensities using SHIVA-WMH detector.
    Tsuchida A; Boutinaud P; Verrecchia V; Tzourio C; Debette S; Joliot M
    Hum Brain Mapp; 2024 Jan; 45(1):e26548. PubMed ID: 38050769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accuracy and reproducibility of automated white matter hyperintensities segmentation with lesion segmentation tool: A European multi-site 3T study.
    Ribaldi F; Altomare D; Jovicich J; Ferrari C; Picco A; Pizzini FB; Soricelli A; Mega A; Ferretti A; Drevelegas A; Bosch B; Müller BW; Marra C; Cavaliere C; Bartrés-Faz D; Nobili F; Alessandrini F; Barkhof F; Gros-Dagnac H; Ranjeva JP; Wiltfang J; Kuijer J; Sein J; Hoffmann KT; Roccatagliata L; Parnetti L; Tsolaki M; Constantinidis M; Aiello M; Salvatore M; Montalti M; Caulo M; Didic M; Bargallo N; Blin O; Rossini PM; Schonknecht P; Floridi P; Payoux P; Visser PJ; Bordet R; Lopes R; Tarducci R; Bombois S; Hensch T; Fiedler U; Richardson JC; Frisoni GB; Marizzoni M
    Magn Reson Imaging; 2021 Feb; 76():108-115. PubMed ID: 33220450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.