These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 2915927)

  • 1. Compensatory mutations demonstrate that P8 and P6 are RNA secondary structure elements important for processing of a group I intron.
    Williamson CL; Desai NM; Burke JM
    Nucleic Acids Res; 1989 Jan; 17(2):675-89. PubMed ID: 2915927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence specificity of the P6 pairing for splicing of the group I td intron of phage T4.
    Ehrenman K; Schroeder R; Chandry PS; Hall DH; Belfort M
    Nucleic Acids Res; 1989 Nov; 17(22):9147-63. PubMed ID: 2685756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-directed mutagenesis of core sequence elements 9R', 9L, 9R, and 2 in self-splicing Tetrahymena pre-rRNA.
    Williamson CL; Tierney WM; Kerker BJ; Burke JM
    J Biol Chem; 1987 Oct; 262(30):14672-82. PubMed ID: 3667597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Base pairing between the 3' exon and an internal guide sequence increases 3' splice site specificity in the Tetrahymena self-splicing rRNA intron.
    Suh ER; Waring RB
    Mol Cell Biol; 1990 Jun; 10(6):2960-5. PubMed ID: 2342465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional and sequence analysis of splicing defective nrdB mutants of bacteriophage T4 reveal new bases and a new sub-domain required for group I intron self-splicing.
    Lal SK; Hall DH
    Biochim Biophys Acta; 1997 Jan; 1350(1):89-97. PubMed ID: 9003462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-splicing of the Tetrahymena group I ribozyme without conserved base-triples.
    Ikawa Y; Yoshioka W; Ohki Y; Shiraishi H; Inoue T
    Genes Cells; 2001 May; 6(5):411-20. PubMed ID: 11380619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A conserved base pair within helix P4 of the Tetrahymena ribozyme helps to form the tertiary structure required for self-splicing.
    Flor PJ; Flanegan JB; Cech TR
    EMBO J; 1989 Nov; 8(11):3391-9. PubMed ID: 2684642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative secondary structures in the 5' exon affect both forward and reverse self-splicing of the Tetrahymena intervening sequence RNA.
    Woodson SA; Cech TR
    Biochemistry; 1991 Feb; 30(8):2042-50. PubMed ID: 1998665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro genetic analysis of the hinge region between helical elements P5-P4-P6 and P7-P3-P8 in the sunY group I self-splicing intron.
    Green R; Szostak JW
    J Mol Biol; 1994 Jan; 235(1):140-55. PubMed ID: 7507168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of nonconserved helices near the 3' end of the rRNA intron of Tetrahymena thermophila alters self-splicing but not core catalytic activity.
    Barfod ET; Cech TR
    Genes Dev; 1988 Jun; 2(6):652-63. PubMed ID: 3417146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of conserved sequence elements 9L and 2 in self-splicing of the Tetrahymena ribosomal RNA precursor.
    Burke JM; Irvine KD; Kaneko KJ; Kerker BJ; Oettgen AB; Tierney WM; Williamson CL; Zaug AJ; Cech TR
    Cell; 1986 Apr; 45(2):167-76. PubMed ID: 2421916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA structure, not sequence, determines the 5' splice-site specificity of a group I intron.
    Doudna JA; Cormack BP; Szostak JW
    Proc Natl Acad Sci U S A; 1989 Oct; 86(19):7402-6. PubMed ID: 2678103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function of tyrosyl-tRNA synthetase in splicing group I introns: an induced-fit model for binding to the P4-P6 domain based on analysis of mutations at the junction of the P4-P6 stacked helices.
    Chen X; Gutell RR; Lambowitz AM
    J Mol Biol; 2000 Aug; 301(2):265-83. PubMed ID: 10926509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 3' splice site-binding sequence in the catalytic core of a group I intron.
    Burke JM; Esherick JS; Burfeind WR; King JL
    Nature; 1990 Mar; 344(6261):80-2. PubMed ID: 2406615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A region of group I introns that contains universally conserved residues but is not essential for self-splicing.
    Williams KP; Fujimoto DN; Inoue T
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10400-4. PubMed ID: 1279677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facilitation of group I splicing in vivo: misfolding of the Tetrahymena IVS and the role of ribosomal RNA exons.
    Nikolcheva T; Woodson SA
    J Mol Biol; 1999 Sep; 292(3):557-67. PubMed ID: 10497021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tyrosyl-tRNA synthetase suppresses structural defects in the two major helical domains of the group I intron catalytic core.
    Myers CA; Wallweber GJ; Rennard R; Kemel Y; Caprara MG; Mohr G; Lambowitz AM
    J Mol Biol; 1996 Sep; 262(2):87-104. PubMed ID: 8831782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstitution of a group I intron self-splicing reaction with an activator RNA.
    van der Horst G; Christian A; Inoue T
    Proc Natl Acad Sci U S A; 1991 Jan; 88(1):184-8. PubMed ID: 1986364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Close relationship between certain nuclear and mitochondrial introns. Implications for the mechanism of RNA splicing.
    Waring RB; Scazzocchio C; Brown TA; Davies RW
    J Mol Biol; 1983 Jul; 167(3):595-605. PubMed ID: 6876158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The P4-P6 domain directs higher order folding of the Tetrahymena ribozyme core.
    Doherty EA; Doudna JA
    Biochemistry; 1997 Mar; 36(11):3159-69. PubMed ID: 9115992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.