These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 29159283)

  • 1. Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses.
    Yu HB; Richert R; Samwer K
    Sci Adv; 2017 Nov; 3(11):e1701577. PubMed ID: 29159283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural origins of Johari-Goldstein relaxation in a metallic glass.
    Liu YH; Fujita T; Aji DP; Matsuura M; Chen MW
    Nat Commun; 2014; 5():3238. PubMed ID: 24488115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical influence on β-relaxations and the formation of molecule-like metallic glasses.
    Yu HB; Samwer K; Wang WH; Bai HY
    Nat Commun; 2013; 4():2204. PubMed ID: 23884157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamental Link between β Relaxation, Excess Wings, and Cage-Breaking in Metallic Glasses.
    Yu HB; Yang MH; Sun Y; Zhang F; Liu JB; Wang CZ; Ho KM; Richert R; Samwer K
    J Phys Chem Lett; 2018 Oct; 9(19):5877-5883. PubMed ID: 30240226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural origin for vibration-induced accelerated aging and rejuvenation in metallic glasses.
    Zhou ZY; Peng HL; Yu HB
    J Chem Phys; 2019 May; 150(20):204507. PubMed ID: 31153173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinguishing different classes of secondary relaxations from vapour deposited ultrastable glasses.
    Rodríguez-Tinoco C; Ngai KL; Rams-Baron M; Rodríguez-Viejo J; Paluch M
    Phys Chem Chem Phys; 2018 Aug; 20(34):21925-21933. PubMed ID: 29862402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol.
    Yardimci H; Leheny RL
    J Chem Phys; 2006 Jun; 124(21):214503. PubMed ID: 16774419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of the structural and Johari-Goldstein relaxations in Pd-based metallic glass-forming liquids.
    Qiao J; Casalini R; Pelletier JM; Kato H
    J Phys Chem B; 2014 Apr; 118(13):3720-30. PubMed ID: 24611812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic heterogeneity, cooperative motion, and Johari-Goldstein [Formula: see text]-relaxation in a metallic glass-forming material exhibiting a fragile-to-strong transition.
    Zhang H; Wang X; Yu HB; Douglas JF
    Eur Phys J E Soft Matter; 2021 Apr; 44(4):56. PubMed ID: 33871722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of structure in the α and β dynamics of a simple glass-forming liquid.
    Fragiadakis D; Roland CM
    Phys Rev E; 2017 Feb; 95(2-1):022607. PubMed ID: 28297980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between Viscoelastic Moduli and Atomic Rearrangements in Metallic Glasses.
    Yu HB; Richert R; Samwer K
    J Phys Chem Lett; 2016 Oct; 7(19):3747-3751. PubMed ID: 27606965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between Molecular Mobility and Physical Stability in Pharmaceutical Glasses.
    Mehta M; Ragoonanan V; McKenna GB; Suryanarayanan R
    Mol Pharm; 2016 Apr; 13(4):1267-77. PubMed ID: 26895136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unusual fast secondary relaxation in metallic glass.
    Wang Q; Zhang ST; Yang Y; Dong YD; Liu CT; Lu J
    Nat Commun; 2015 Jul; 6():7876. PubMed ID: 26204999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of dielectric relaxations of anhydrous trehalose and maltose glasses.
    Kwon HJ; Seo JA; Kim HK; Hwang YH
    J Chem Phys; 2011 Jan; 134(1):014508. PubMed ID: 21219008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Johari-Goldstein
    Shiraishi K; Mizuno H; Ikeda A
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2215153120. PubMed ID: 36989301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between primary and secondary Johari-Goldstein relaxations in supercooled liquids: invariance to changes in thermodynamic conditions.
    Mierzwa M; Pawlus S; Paluch M; Kaminska E; Ngai KL
    J Chem Phys; 2008 Jan; 128(4):044512. PubMed ID: 18247974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of glass-forming liquids. XII. Dielectric study of primary and secondary relaxations in ethylcyclohexane.
    Mandanici A; Huang W; Cutroni M; Richert R
    J Chem Phys; 2008 Mar; 128(12):124505. PubMed ID: 18376941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relating Ultrastable Glass Formation to Enhanced Surface Diffusion via the Johari-Goldstein β-Relaxation in Molecular Glasses.
    Ngai KL; Wang LM; Yu HB
    J Phys Chem Lett; 2017 Jun; 8(12):2739-2744. PubMed ID: 28585827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Communications: Comparison of activation barriers for the Johari-Goldstein and alpha relaxations and its implications.
    Goldstein M
    J Chem Phys; 2010 Jan; 132(4):041104. PubMed ID: 20113012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of supercooled and glassy dipropyleneglycol dibenzoate as functions of temperature and aging: Interpretation within the coupling model framework.
    Prevosto D; Capaccioli S; Lucchesi M; Rolla PA; Ngai KL
    J Chem Phys; 2004 Mar; 120(10):4808-15. PubMed ID: 15267341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.